Plans for Magnetic Reconnection Research Masaaki Yamada Ellen Zweibel for Magnetic Reconnection Working group CMSO Planning Meeting at U. Chicago November.

Slides:



Advertisements
Similar presentations
NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
Advertisements

Statistical Properties of Broadband Magnetic Turbulence in the Reversed Field Pinch John Sarff D. Craig, L. Frassinetti 1, L. Marrelli 1, P. Martin 1,
NONLINEAR COMPUTATION OF LABORATORY DYNAMOS DALTON D. SCHNACK Center for Energy and Space Science Science Applications International Corp. San Diego, CA.
Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
Magnetic Relaxation in MST S. Prager University of Wisconsin and CMSO.
Experimental tasks Spectra Extend to small scale; wavenumber dependence (Taylor hyp.); density, flow Verify existence of inertial range Determine if decorrelation.
Ion Heating Presented by Gennady Fiksel, UW-Madison for CMSO review panel May 1-2, 2006, Madison.
Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Dissipation in Force-Free Astrophysical Plasmas Hui Li (Los Alamos National Lab) Radio lobe formation and relaxation Dynamical magnetic dissipation in.
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Outline: I. Introduction and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO III. Selected highlights and.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Hall-MHD simulations of counter- helicity spheromak merging by E. Belova PPPL October 6, 2005 CMSO General Meeting.
Ion Heating and Velocity Fluctuation Measurements in MST Sanjay Gangadhara, Darren Craig, David Ennis, Gennady Fiskel and the MST team University of Wisconsin-Madison.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI CMSO Meeting Madison, WI August.
Experimental Tests of Two-Fluid Relaxation D. Craig and MST Team University of Wisconsin – Madison General Meeting of the Center for Magnetic Self-Organization.
Reconnection: Theory and Computation Programs and Plans C. C. Hegna Presented for E. Zweibel University of Wisconsin CMSO Meeting Madison, WI August 4,
Multiple reconnections and explosive events and in MST and solar flares Gennady Fiksel CMSO workshop, Princeton, NJ, Oct 5-8, 2005.
Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics.
MHD Dynamos in the Lab and Dynamos Beyond MHD. The lab plasma dynamo does Generate current locally Increase toroidal magnetic flux Conserve magnetic helicity.
Anomalous Ion Heating Status and Research Plan
General Meeting Madison, August 4-6, 2004 Plans and Progress of Magnetic Helicity Conservation and Transport H. Ji for participants of the Center for Magnetic.
Progress and Plans on Magnetic Reconnection for CMSO M. Yamada, C. Hegna, E. Zweibel For General meeting for CMSO August 4, Recent progress and.
EXTENDED MHD SIMULATIONS: VISION AND STATUS D. D. Schnack and the NIMROD and M3D Teams Center for Extended Magnetohydrodynamic Modeling PSACI/SciDAC.
Results from Magnetic Reconnection Experiment And Possible Application to Solar B program For Solar B Science meeting, Kyoto, Japan November 8-11, 2005.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Magnetic Reconnection: Progress and Status of Lab Experiments In collaboration with members of MRX group and NSF-DoE Center of Magnetic Self-organization.
Laboratory Studies of Magnetic Reconnection – Status and Opportunities – HEDLA 2012 Tallahassee, Florida April 30, 2012 Hantao Ji Center for Magnetic Self-organization.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April.
Collisionless Magnetic Reconnection J. F. Drake University of Maryland Magnetic Reconnection Theory 2004 Newton Institute.
The Structure of the Parallel Electric Field and Particle Acceleration During Magnetic Reconnection J. F. Drake M.Swisdak M. Shay M. Hesse C. Cattell University.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
1 Hantao Ji Princeton Plasma Physics Laboratory Experimentalist Laboratory astrophysics –Reconnection, angular momentum transport, dynamo effect… –Center.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Overview of equations and assumptions Elena Khomenko, Manuel Collados, Antonio Díaz Departamento de Astrofísica, Universidad de La Laguna and Instituto.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Multiscale issues in modeling magnetic reconnection J. F. Drake University of Maryland IPAM Meeting on Multiscale Problems in Fusion Plasmas January 10,
Experimental Study of Magnetic Reconnection and Dynamics of Plasma Flare Arc in MRX Masaaki Yamada August SHINE Meeting at Nova Scotia Center.
BGU WISAP Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Reconnection rates in Hall MHD and Collisionless plasmas
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
IMPRS Lindau, Space weather and plasma simulation Jörg Büchner, MPAe Lindau Collaborators: B. Nikutowski and I.Silin, Lindau A. Otto, Fairbanks.
II. MAGNETOHYDRODYNAMICS (Space Climate School, Lapland, March, 2009) Eric Priest (St Andrews)
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
Collisionless Magnetic Reconnection J. F. Drake University of Maryland presented in honor of Professor Eric Priest September 8, 2003.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Simulation Study of Magnetic Reconnection in the Magnetotail and Solar Corona Zhi-Wei Ma Zhejiang University & Institute of Plasma Physics Beijing,
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
“Ambipolar Diffusion” and Magnetic Reconnection Tsap Yu. T
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
Electron-Scale Dissipations During Magnetic Reconnection The 17th Cluster Workshop May 12-15, 2009 at Uppsala, Sweden Hantao Ji Contributors: W. Daughton*,
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetic Structure Feb. 16, 2012.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration: Ethan Vishniac, Grzegorz.
Transport Model with Global Flow M. Yagi, M. Azumi 1, S.-I. Itoh, K. Itoh 2 and A. Fukuyama 3 Research Institute for Applied Mechanics, Kyushu University.
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
An overview of turbulent transport in tokamaks
Field-Particle Correlation Experiments on DIII-D Frontiers Science Proposal Under weakly collisional conditions, collisionless interactions between electromagnetic.
Dynamic Coupling between the Magnetosphere and the Ionosphere
Presentation transcript:

Plans for Magnetic Reconnection Research Masaaki Yamada Ellen Zweibel for Magnetic Reconnection Working group CMSO Planning Meeting at U. Chicago November 18-19, 2003

Contents Current Status and Issues –Experiments (15 min) –Theory and Simulations (15 min) Immediate Plans (20 min) Long-range Plans (5 min) Discussions (30 min)

Two competing models to explain fast reconnection 1-Fluid MHD model + effective resistivity (Effects of waves) 2-Fluids MHD; decoupling of ions and electrons within the ion skin depth, c pi ; -> Including the Hall term, j e xB Dedicated lab experiments [MRX, SSX, TS-3, VTF etc.] Generalized Sweet-Parker modelPetschek-type Model

Sheet thickness agrees well with Harris model is not determined by Classical Sweet-Parker thickness ---- Classical Sweet-Parker width c/ pi Collisional regime

The measured current sheet profiles agree well with Harris theory

Sheet thickness agrees well with Harris model scales with Harris model –Demonstrate the effects of 2-fluids plasmas –Constant normalized drift velocity

Mozer et al., PRL 2002 POLAR satellite A reconnection layer has been documented in the magnetopause

Numerical simulation can assess 2-fluids effects JeJe JiJi ViVi Below c/ pi electron and ion motion decouple electrons frozen-in Observed out-of-plane quadrupole fields Obtained a thin electron current layer of c/ pe Drake et al These results have not been verified in lab experiments

Reconnection speeds up drastically in low collisionality regime What causes the anomalous resistivity? Measured resistivity Trintchouk et al, PoP 2003 Collisionality

Fluctuation Amplitudes Correlate with Resistivity Enhancement

Reconnection in MST Spontaneous and forced reconnection occurs (edge reconnection not linearly driven - measured) Current sheet widths larger than linear MHD prediction (or Sweet-Parker width) Hall effects important (Hall dynamo)

Dynamo in a laboratory plasma Toroidal magnetic flux Large scale magnetic field is generated in continuous and discrete events from small scale fluctuations [From MST data] Helicity ~const.

Effects of reconnection in the lab toroidal magnetic flux heat flux (MW/m 2 ) rotation (km/s) ion temperature (keV) dynamo magnetic reconnection energy transport momentum transport ion heating time (ms)

Multiple reconnnection sites radius q

Spontaneous vs Forced MHD predicts Core reconnection from linear tearing instabilities (m, n) = (1,6), (1,7), (1,8)… nonlinearly coupled spontaneous Edge reconnection is nonlinearly driven (1,6) + (1,7) --> (0,1) (1,7) + (1,8) --> (0,1) etc. forced

m =0 mode necessary for sawtooth; resets sawtooth cycle core edge

Relationship between global phenomena and local mechanisms TS-3 experiments indicated that an global driving force (merging speed) determined local reconnection rate. Y. Ono et al., Phys. Plasmas, 5B, 3691 (1993) 1. Role of local reconnection on dynamo [=> MST] 2. Plasma merging [MRX, SSX, and TS-3] Global reconnection local reconnection dynamics

Status- Theory/ Computation

Plans for Magnetic Reconnection Research

I. Overall goals: 1) Find key relationships between the local physics of the reconnection layer and the dynamics of global plasma reconnection. 2) Study comprehensively the 2 fluids MHD effects through the generalized Ohms law in the neutral sheet and determine the role of turbulence in reconnection process, Identify key 3-D effects3) Identify key 3-D effects on reconnection, whether intrinsic or due to boundary conditions. 4) Evaluate the role of magnetic reconnection in dynamos and, more generally, in magnetic self- organization phenomena.

II Major current issues The most important issue, both in laboratory and astrophysical plasmas, is to characterize the relationship between the macroscopic (global structure) and microscopic (local) scale reconnection physics. Our important key issues are; 1) Reconnection rate; It is widely known that most observations in laboratory and astrophysical plasmas show much faster reconnection rate than the Sweet-Parker rate. It is important to find a new model to explain the observed data. 2) Local reconnection dynamics ; It is necessary to develop a comprehensive understanding of the mechanisms by which large scale systems generate the local reconnection structures, through the formation of current sheets, either arising in situ or forced by boundary conditions. It is also crucial to assess 2 fluids MHD effects through the generalized Ohms law in thin current sheets which have been already demonstrated in laboratories. 3) Large scale effects of reconnection; Reconnection influences the energy balance and dynamics of a global plasma structure. Some depend on the details of the reconnection process itself; possibly others do not. It is important to find the extent to which large scale processes are sensitive to the small scale physics of reconnection, and develop macroscopic diagnostics of the reconnection process. 4) Dynamics of spontaneous and driven reconnection in laboratory and astrophysical contexts. It is important to know when and how reconnection is initiated, the effect of the boundary conditions and rational surfaces.

III. Immediate research objectives 1)* Investigate theoretically, computationally and experimentally the local dynamics in the vicinity of the neutral sheet (reconnection layer), to assess 2-fluids MHD effects, such as Hall and turbulence effects. Potential roles of electron diffusion region will be assessed. Evaluate how these 2-fluids effects can be implemented into the MHD description which applies on large scales. We will attempt to identify criteria for the transition from the one-fluid MHD to the non MHD regime. Possible effects include the relative thicknesses of the Sweet-Parker layer and the ion skin depth, the amplitude of the initial perturbation, and the nature of forcing. We will continue to develop the theory of reconnection in weakly ionized systems. There are preliminary indications that the Hall regime is pushed to larger length scales because ion-neutral friction increases the effective ion inertia. 2)* Explore the relationship between anomalous ion heating and reconnection events in both laboratory and astrophysical plasmas and to investigate why T i is generally higher than T e. Magnetic reconnection and anomalous ion heating are observed to be closely associated in both laboratory and astrophysical plasmas. We will address this problem collaboratively in our center experiments and theoretical/computational studies. The effects of the energetic ions on reconnection will be also studied in linear and non-linear stages. 3*) Investigate how the local reconnection process is related to global reconnection and dynamo activities. Study flux conversion process and the effects of turbulent EMF along the mean magnetic field during magnetic self-organization.

III-A. Specific experimental work plans 1)* We will investigate quantitative relationship between the observed enhanced resistivity and all fluctuations of broad spectrum. Our proposed research includes experimental study of the role of magnetic fluctuations in observed in MRX and SSX where reconnection layer is well identified, and also in MST and SSPX where reconnection layer exists in multiple places. 2) An attempt will be made to identify a dominant reconnection layer in MST and SSPX. In these laboratory plasmas, reconnection can occur simultaneously at a number of rational surfaces. In solar flares, energy appears to be released within a large volume. A turbulent medium may have many reconnection sites in close proximity. We will investigate the effects of interaction between multiple reconnection sites on the reconnection rate. 3)** We will investigate how the local reconnection process is related to global dynamo activities or flux conversion process in MST. More specifically, it includes accurate measurements of time evolution of magnetic and flow topology around reconnection sites. This task requires support from theory and simulation; linear, quasi- linear, and possibly nonlinear theories of dominant instabilities (e.g. tearing modes) in realistic 3-D geometry. New theories and simulations using 2-fluid models are likely required to explain experimental data. 4) Joint development of diagnostics tools will be made in the area of spectroscopic measurements (IDSP), and local measurements of magnetic field fluctuations among all four devices. 5)* We attempt to find a scaling of reconnection rate with respect to local plasma parameters in MRX, SSX, MST and SSPX.

III-B. Specific theoretical work plans 1)* Develop asymptotic formulae for the scaling of the reconnection rate in systems in which the reconnection layer is many orders of magnitude less than the size of the system. These formulae can be tested, but not replaced by, numerical simulations. The appropriate model may be a two stage scenario which addresses the development of small scales followed by rapid dissipation. 2)* Reconnection is often posited as an energy source in astrophysical settings, but there are few quantitative models of the energetic effects of reconnection which could be compared with observations. We will compute radiative signatures of plasma heating, particle acceleration, and generation of bulk flows by reconnection in particular systems. 3)* Computations of large scale dynamics cannot simultaneously include the reconnection scale. We will use detailed models of the reconnection region itself, and the coupling between the large and small scales, to develop a parameterization of reconnection which can be used in large scale computations. Optimally, this parameterization would give a good approximation to the energetic and dynamical effects of reconnection. 4)* MHD analysis of reconnection will continue, especially with regard to the effects of turbulence and 3D geometry. The generalized Sweet-Parker model and the Kulsrud model based on 1-fluid MHD will be tested by FLASH code as well as in MRX and SSX.

III-C. Specific computational work plans We anticipate the need for simulations, combined with theory, to complement many of the experimental initiatives. Not all computational capabilities can be realized within a single code, so we expect to use multiple codes, with overlapping regimes of validity. This will permit internal benchmarking studies. Important features will be: 1)Implicit time stepping so that both fast dynamical phenomena and slow resistive phenomena can be studied in the same problem. NIMROD and DEBS are implicit. FLASH is being made implicit. The IRC (anachronistic term for the code developed at U. Iowa) is implicit in 2D and explicit in 3D. 2)Ability to treat time dependent problems in 3 space dimensions, for a greater degree of physical realism in both lab and astrophysical plasmas. NIMROD, DEBS, FLASH, and IRC all have this capability. 3)Flexibility in the boundary conditions, including periodic, line tied, and open, to suit different physical problems. For example, reconnection problems in stellar coronae require line field boundary conditions. 4)Physics beyond MHD. Hall effects and possibly anisotropic electron pressure must be included to model laboratory measurements of the reconnection layer. In astrophysical problems (and lab applications where energetic ions are present) species such as dust grains and cosmic rays should be treated as particles even when the background plasma can be modeled as two fluids. 5)Collaborations involving codes written outside the Center. The IRC is a particularly attractive possibility, as it has a detailed treatment of non-MHD physics, was written with space plasma applications in mind, and there is some overlap of personnel. Once the codes are in place we will use them to model layer physics, including the electron pressure term, and to develop a simple parameterization of layer physics that can be used for larger scale computations in MHD codes.

IV. Long range plans 1)*Inject 1MW NBI in MST and MRX to investigate the role of magnetic reconnection in dynamo phenomena. Within the next two years, the effects of injected hot ions on dynamo and reconnection phenomena will be studied in MST. After that the 20kV, the NBI beam will be injected into MRX to study dynamo effects of injected high-energy ions as well as the effects of hot ions in the reconnection region. These two studies will be carried out collaboratively. 2)*Investigate the effects of turbulence and magnetic chaos on reconnection. We will investigate the effect of a variety of perturbations on reconnection in laboratory plasmas and develop a theory for the interaction between multiple reconnection sites. 3)*Evaluate the roles of magnetic reconnection in other self- organization phenomena, particularly in dynamos and ion heating. In addition we expect strong connection with magnetic chaos and momentum transport phenomena.

System L * (10cm)B * (100G)T * (10ev) MRX Astrophysics Solar Flares Magnetosphere12320 Tokamak , which comes from, where, and is the Lundguist number. Comparison the Sweet-Parker and Ion Inertia Lengths

How can we apply lab results to astrophysics? 1. Can we find a Taylor state in space plasmas? Do we see magnetic helicity conservation? -- There is no defined boundary in most space plasmas 2. Can we identify a reconnection layer? (-> May be Yes) Observed in the magnetosphere Solanskis data in the Sun