Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007
Outline Introduction 4 Specific Types of Biosensors Electrochemical (DNA) Carbon nanotube BioFET Whole Cell Basic functionality Benefits/Challenges Summary References
Introduction Biosensor: Incorporation of a biomolecule in order to detect something Species to be detected (analyte) FilterRecognition Layer TransducerElectronicsSignalRecognition Layer Carbon N-T E-DNA BioFET Whole CellSummary Introduction
Biosensors ~ $3B 90% → Glucose testing 8% - 10% increase in industry per year Carbon N-T E-DNA BioFET Whole CellSummary Introduction
Electrochemical DNA Sensors Harnesses specificity of DNA Simple assembly Customizable Vast uses for small cost Carbon N-T E-DNA BioFET Whole CellSummary Introduction
DNA Structure DNA structures---double helix 4 complementary bases: Adenine (A), Guanine (G), Thymine (T), and Cytosine (C) Carbon N-T E-DNA BioFET Whole CellSummary Introduction
DNA Specificity Hydrogen bonding between base pairs Stacking interaction between bases along axis of double-helix Animation Carbon N-T E-DNA BioFET Whole CellSummary Introduction
Principles of DNA biosensors Nucleic acid hybridization Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: ssDNA (Probe) (Target Sequence) (Hybridization) (Stable dsDNA)
E-DNA Sensor Structure “Stem-loop” s Gold electrode Carbon N-T E-DNA BioFET Whole CellSummary Introduction
E-DNA Sensor Structure “Stem-loop” Target s Gold electrode Carbon N-T E-DNA BioFET Whole CellSummary Introduction
E-DNA Sensor Structure Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Ricci et al., Langmuir, 2007, 23, (Stem-loop) (Open, extended)
Carbon Nanotube Biosensor Carbon N-T E-DNA BioFET Whole CellSummary Introduction Image:
Carbon Nanotube Biosensor Carbon N-T E-DNA BioFET Whole CellSummary Introduction One atom thick One nanometer diameter Ability to be functionalized Electrical conductivity as high as copper, thermal conductivity as high as diamond
CNT Biosensor Structure Carbon N-T E-DNA BioFET Whole CellSummary Introduction Succinimidyl ester Source: Chen et al., 2001
CNT Uncoated vs. Coated Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Chen et al., 2001
Carbon Nanotube Biosensors Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Chen et al., 2001
CNT Biosensor Signal Detection Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Besteman et al., 2003 O2O2 H2O2H2O2 Glucose Gluconic Acid e-e-
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Besteman et al., 2003 e-e- e-e- e-e- e-e- e-e- Effectively increases electrical current CNT Biosensor Signal Detection
CNT Biosensor Results Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Besteman et al., mM 20 mM 60 mM 160 mM
Carbon N-T E-DNA BioFET Whole CellSummary Introduction BioFET Draws upon versatility of common electronic component (Field-Effect Transistor) Well understood expectations/results
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Hayes & Horowitz, 1989 FET Drain Gate Source Insulator
Carbon N-T E-DNA BioFET Whole CellSummary Introduction FET Drain Gate Source Insulator (Electron Channel) (Not conductive enough)
Carbon N-T E-DNA BioFET Whole CellSummary Introduction FET Drain Gate Source - Insulator Threshold Voltage
Carbon N-T E-DNA BioFET Whole CellSummary Introduction FET Drain Gate Source Insulator
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Im et al., 2007 BioFET
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Im et al., 2007 BioFET
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Im et al., 2007 BioFET Results Gate (before)
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Im et al., 2007 BioFET Results Gate (after etch, w/biotin) Gate (w/ complete Biomolecule) d
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Whole Cell Sensors
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Whole Cell Sensors Harness normal genetic processes May detect dozens of pathogens Modifiable/customizable Reports bioavailability Temperature/pH sensitive Short shelf-life
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Daunert et al., 2000 Whole Cell Sensors
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Tonomura et al., 2006 Action-Potential Biosensor
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Tonomura et al., 2006 Action-Potential Biosensor (Side view)
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Tonomura et al., 2006 Action-Potential Biosensor Suction
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Tonomura et al., 2006 Action-Potential Biosensor Suction
Carbon N-T E-DNA BioFET Whole CellSummary Introduction Source: Tonomura et al., 2006 Action-Potential Biosensor
Carbon N-T E-DNA BioFET Introduction Summary Use of biomolecules in sensors offers: Extreme sensitivity Flexibility of use Wide array of detection Universal application Whole CellSummary
But still maintains challenges of: pH/Temperature sensitivity Degradation Repeatable use Regardless of challenges: Biosensors will permeate future society Carbon N-T E-DNA BioFET Introduction Whole CellSummary
References K McKimmie. “What’s a Biosensor, Anyway?”, Indiana Business Magazine, 2005, 49, 1: N Zimmerman. “Chemical Sensors Market Still Dominating Sensors”, Materials Management in Health Care, 2006, 2, 54. K Odenthal, J Gooding. “An introduction to electrochemical DNA biosensors”, Analyst, 2007, 132, 603–610. S V Lemeshko, T Powdrill, Y Belosludtsev, M Hogan, “Oligonucleotides form a duplex with non-helical properties on a positively charged surface”, Nucleic Acids Res., 2001, 29, 3051–3058. F Ricci, R Lai, A Heeger, K Plaxco, J Sumner. “Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor”, Langmuir, 2007, 23, M Heller. “DNA Microarray Technology”, Annual Review of Biomedical Engineering, 2002, 4, E Boon, D Ceres, T Drummond, M Hill, J Barton, “Mutation Detection by DNA electrocatalysis at DNA-modified electrodes”, Nat. Biotechnol. 2000, 18, S Timur, U Anik, D Odaci, L Gorton, “Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes”, Electrochemistry Communications, 2007, 9, Electrochemistry Communications K Besteman, J Lee, F Wiertz, H Heering, C Dekker. “Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors”, Nano Letters, 2003, 3, 6: R Chen, Y Zhang, D Wang, H Dai. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization”, J. Am. Chem. Soc., 2001, 123, 16: K Balasubramanian, M Burghard. “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 2005, 385, Hayes & Horowitz, Student Manual for the Art of Electronics, Cambridge Univ. Press, I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu. “A dielectric-modulated field-effect transistor for biosensing”, Nature Nanotechnology, 2007, 2, 430 – 434. D Therriault. “Filling the Gap”, Nature Nanotechnology, 2007, 2, S Daunert, GBarrett, J Feliciano, R Shetty, S Shrestha, W Smith-Spencer. “Genetically Engineered Whole-Cell Sensing Systems: Coupling Biological Recognition with Reporter Genes”, Chem. Rev. 2000, 100, T Petänen, M Romantschuk. “Measurement of bioavailability of mercury and arsenite using bacterial biosensors”, Chemosphere, 2003, 50, F Roberto, J Barnes, D Bruhn. “Evaluation of a GFP Reporter Gene Construct for Environmental Arsenic Detection.”, Talanta. 2002, 58, 1: W Tonomura, R Kitazawa, T Ueyama, H Okamura, S Konishi. “Electrophysiological biosensor with Micro Channel Array for Sensing Signals from Single Cells”, IEEE Sensors, 2006, R Leois, J Rae. “Low-noise patch-clamp techniques”, Meth. Enzym. 1998, 293: [1] A Vikas, C S Pundir. “Biosensors: Future Analytical Tools”, Sensors and Transducers, 2007, 2,
Questions? Carbon N-T E-DNA BioFET Introduction Whole CellSummary