Current carrying wires 1820 Hans Christian Oersted Hans Christian Ørsted.

Slides:



Advertisements
Similar presentations
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Advertisements

Electromagnetic Induction Inductors. Problem A metal rod of length L and mass m is free to slide, without friction, on two parallel metal tracks. The.
Chapter 10 Time-Varying Fields and Maxwell’s Equations Two New Concepts: The electric field produced by a changing magnetic field (Faraday) The magnetic.
Induction and Inductance Induction Faraday’s Law of Induction Lenz’s Law Energy Transfer Induced Electric Fields Inductance and Self Inductance RL Circuits.
Magnetic Flux Let us consider a loop of current I shown in Figure(a). The flux  1 that passes through the area S 1 bounded by the loop is Suppose we pass.
Magnetic Fields Faraday’s Law
Biot-Savart Law The Field Produced by a Straight Wire.
Induced EMF and Inductance 1830s Michael Faraday Joseph Henry M is mutual inductance.
Induced EMF and Inductance 1830s Michael Faraday Joseph Henry.
Problem 2 Find the torque about the left hand segment on the loop as a function of θ, the angle the plane makes with the horizontal plane.
In the circuit below, suppose the switch has been in position A for a very long time. If it is then switched to B at t=0, find the current as a function.
Physics 1502: Lecture 18 Today’s Agenda Announcements: –Midterm 1 distributed available Homework 05 due FridayHomework 05 due Friday Magnetism.
Waves can be represented by simple harmonic motion.
Magnetism July 2, Magnets and Magnetic Fields  Magnets cause space to be modified in their vicinity, forming a “ magnetic field ”.  The magnetic.
1 Electronics Inductance Copyright © Texas Education Agency, All rights reserved.
Biot-Savart Law The Field Produced by a Straight Wire.
Electromagnetic Induction. Currents Create Magnetic Fields 1820 Hans Christian Oersted found that magnetism was produced by current-carrying wires.
AP Physics C Chapter 28.  s1/MovingCharge/MovingCharge.html s1/MovingCharge/MovingCharge.html.
Physics 121 Practice Problem Solutions 11 Faraday’s Law of Induction
Chapter 29 Electromagnetic Induction and Faraday’s Law HW#9: Chapter 28: Pb.18, Pb. 31, Pb.40 Chapter 29:Pb.3, Pb 30, Pb. 48 Due Wednesday 22.
INDUCTANCE Plan:  Inductance  Calculating the Inductance  Inductors with Magnetic materials.
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
Magnetic Field Strength Around a Wire. From the demonstration, we saw that: the magnetic field strength varies directly with the amount of current flowing.
CHAPTER 20, SECTION 1 ELECTRICITY FROM MAGNETISM.
Flux Density due to a current flowing in a long straight wire © David Hoult 2009.
Unit 5: Day 8 – Mutual & Self Inductance
AP Physics C Montwood High School R. Casao
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Sources of the Magnetic Field
Nov PHYS , Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #20, Review Part 2 Tues. November Dr. Andrew Brandt HW28 solution.
Magnetism 1. 2 Magnetic fields can be caused in three different ways 1. A moving electrical charge such as a wire with current flowing in it 2. By electrons.
1 Electromagnetic Induction Chapter Induction A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter.
B due to a moving point charge where  0 = 4  x10 -7 T.m/A Biot-Savart law: B due to a current element B on the axis of a current loop B inside a solenoid.
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
Review Problem Review Problem Review Problem 3 5.
Lecture 14 Magnetic Domains Induced EMF Faraday’s Law Induction Motional EMF.
MAGNETIC INDUCTION MAGNETUIC FLUX: FARADAY’S LAW, INDUCED EMF:
Magnetic Induction - magnetic flux - induced emf
Review 1.
Magnetism and its applications.
Faraday’s Law and Inductance. Faraday’s Law A moving magnet can exert a force on a stationary charge. Faraday’s Law of Induction Induced emf is directly.
Electro- magnetic Induction Lecture 3 AP Physics.
Chapter 20 Electromagnetic Induction. Electricity and magnetism Generators, motors, and transformers.
29. Electromagnetic Induction
Faraday’s Law of Induction.  = -N  B /  t –  : induced potential (V) – N: # loops –  B : magnetic flux (Webers, Wb) – t: time (s)
Magnetism Alternating-Current Circuits

Chapter 20 Magnetic Flux Faraday’s Law. We saw in Chapter 19 that moving charges (currents) create magnetic fields. Nature often reveals a great deal.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Magnetism #2 Induced EMF Ch.20. Faraday’s Law of Induction We now know that a current carrying wire will produce its own magnetic field with the lines.
Magnetic Fields. Magnetic Fields and Forces a single magnetic pole has never been isolated magnetic poles are always found in pairs Earth itself is a.
Physics 1202: Lecture 12 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
CH Review Changing the magnetic flux in a coil induces an emf around the coil. (As long as the coil is connected in a complete circuit, a current.
1 15. Magnetic field Historical observations indicated that certain materials attract small pieces of iron. In 1820 H. Oersted discovered that a compass.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
 Electromagnetic Induction – The production of an emf (the energy per unit charge supplied by a source of electric current) in a conducting circuit by.
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
Problem 4 A metal wire of mass m can slide without friction on two parallel, horizontal, conducting rails. The rails are connected by a generator which.
Electromagnetic Induction.  = BA  = BA cos  Magnetic flux: is defined as the product of the magnetic field B and the area A of the.
Problem 3 An infinitely long wire has 5 amps flowing in it. A rectangular loop of wire, oriented as shown in the plane of the paper, has 4 amps in it.
Lecture 3-6 Self Inductance and Mutual Inductance
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Electricity and Magnetism
Presentation transcript:

Current carrying wires 1820 Hans Christian Oersted Hans Christian Ørsted

Biot-Savart Law Infinitesimally small element of a current carrying wire produces an infinitesimally small magnetic field (Also called Ampere’s principle) is called permeability of free space

Ampere’s Law The field produced by an infinite wire

Problem 6 An infinitely long, hollow cylindrical wire has inner radius a and outer radius b. A current i is uniformly distributed over its cross-section. Find the magnetic field everywhere.

Problem 4 Consider a very long (essentially infinite), tightly wound coil with n turns per unit length. This is called a solenoid. Assume that the lines of B are parallel to the axis of the solenoid and non-zero only inside the coil and very far away. Also assume that B is constant inside. Find B inside the solenoid if there is a current i flowing through it.

Problem 3 An infinitely long wire has 5 amps flowing in it. A rectangular loop of wire, oriented as shown in the plane of the paper, has 4 amps in it. What is the force exerted on the loop by the long wire?

Induced EMF and Inductance 1830s Michael Faraday Joseph Henry

Faraday’s Law of Induction The induced EMF in a closed loop equals the negative of the time rate of change of magnetic flux through the loop

There can be EMF produced in a number of ways: A time varying magnetic field An area whose size is varying A time varying angle between and Any combination of the above

R From Faraday’s law: a time varying flux through a circuit will induce an EMF in the circuit. If the circuit consists only of a loop of wire with one resistor, with resistance R, a current Which way? Lenz’s Law: if a current is induced by some change, the direction of the current is such that it opposes the change.