Interstellar Turbulence and hierarchical structuring Nicolas Décamp (Univ. della Calabria) Jacques Le Bourlot (Obs. de Paris)

Slides:



Advertisements
Similar presentations
P.W. Terry K.W. Smith University of Wisconsin-Madison Outline
Advertisements

Proto-Planetary Disk and Planetary Formation
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Nanoflares and MHD turbulence in Coronal Loop: a Hybrid Shell Model Giuseppina Nigro, F.Malara, V.Carbone, P.Veltri Dipartimento di Fisica Università della.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
T. Elperin, A. Fominykh and B. Krasovitov Department of Mechanical Engineering The Pearlstone Center for Aeronautical Engineering Studies Ben-Gurion University.
Magnetic field diffusion in Molecular Clouds Understanding star formation is a central problem of modern astrophysics. In this work we are performing a.
Modelling the Broad Line Region Andrea Ruff Rachel Webster University of Melbourne.
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
The Effects of Mass Loss on the Evolution of Chemical Abundances in Fm Stars Mathieu Vick 1,2 Georges Michaud 1 (1)Département de physique, Université.
Dissipation of Alfvén Waves in Coronal Structures Coronal Heating Problem T corona ~10 6 K M.F. De Franceschis, F. Malara, P. Veltri Dipartimento di Fisica.
Non-diffusive transport in pressure driven plasma turbulence D. del-Castillo-Negrete B. A. Carreras V. Lynch Oak Ridge National Laboratory USA 20th IAEA.
Multifractal acceleration statistics in turbulence Benjamin Devenish Met Office, University of Rome L. Biferale, G. Boffetta, A. Celani, A.Lanotte, F.
An analytic explanation of the stellar initial mass function from the theory of spatial networks Andrei Klishin* (MIT Physics) & Igor Chilingarian (SAO)
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
T. Elperin, A. Fominykh and B. Krasovitov Department of Mechanical Engineering The Pearlstone Center for Aeronautical Engineering Studies Ben-Gurion University.
Overview of equations and assumptions Elena Khomenko, Manuel Collados, Antonio Díaz Departamento de Astrofísica, Universidad de La Laguna and Instituto.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Interstellar Medium and Star Formation in the Andromeda Galaxy Andreas Schruba California Institute of Technology Adam Leroy, Karin Sandstrom, Fabian Walter,
Star Formation Processes in Stellar Formation Sequence of Events Role of Mass in Stellar Formation Observational Evidence New Theories.
Kemerovo State University(Russia) Mathematical Modeling of Large Forest Fires Valeriy A. Perminov
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Collaborators : Valentine Wakelam (supervisor)
The Interstellar Medium
Plasma diagnostics using spectroscopic techniques
Cusp turbulence as revealed by POLAR magnetic field data E. Yordanova Uppsala, November, 2005.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
A Gas Grain Model of ISM Cores with Moment Equations to Treat Surface Chemistry Yezhe Pei & Eric Herbst The Ohio State University June 25 th, th.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
Interfaces and shear banding
Physics of turbulence at small scales Turbulence is a property of the flow not the fluid. 1. Can only be described statistically. 2. Dissipates energy.
[CII] mapping of the diffuse ISM with SPICA / SAFARI F. Levrier P. Hennebelle P. Lesaffre M. Gerin E. Falgarone (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
I m going to talk about my work in last 2 years
Structure and Stability of Phase Transition Layers in the Interstellar Medium Tsuyoshi Inoue, Shu-ichiro Inutsuka & Hiroshi Koyama 1 12 Kyoto Univ. Kobe.
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Some atomic physics u H I, O III, Fe X are spectra –Emitted by u H 0, O 2+, Fe 9+ –These are baryons u For absorption lines there is a mapping between.
Planetary Nebulae as a Testground of Interstellar Molecular Chemistry Tatsuhiko Hasegawa.
FORMATION OF MOLECULAR HYDROGEN ON A GRAPHITE SURFACE S. Morisset [1], F. Aguillon [2], M. Sizun [2], V. Sidis [2] [1] Laboratoire de Mécanique, Physique.
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Probing cosmic structure formation in the wavelet representation Li-Zhi Fang University of Arizona IPAM, November 10, 2004.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
INTRODUCTION TO CONVECTION
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
8 -The Interstellar Medium. Emission-Line Nebulae H II Regions Planetary Nebulae Supernova Remnants.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Molecules around AE Aurigae Patrick Boissé, IAP Collaborators oAndersson BG. oGalazutdinov G. oFederman S. oGerin M. oGry C. oHilly-Blant P. oKrelowski.
C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon.
The Power Spectra and Point Distribution Functions of Density Fields in Isothermal, HD Turbulent Flows Korea Astronomy and Space Science Institute Jongsoo.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
The Gaseous Universe Section 3.4 of the text. Phases of Matter There are four: Solid - rare, in astronomy Liquid - rarest in astronomy: examples include.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
Arthur Straube PATTERNS IN CHAOTICALLY MIXING FLUID FLOWS Department of Physics, University of Potsdam, Germany COLLABORATION: A. Pikovsky, M. Abel URL:
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
Spectrum and small-scale structures in MHD turbulence Joanne Mason, CMSO/University of Chicago Stanislav Boldyrev, CMSO/University of Madison at Wisconsin.
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
Ignition by hot jets Dr.-Ing. Detlev Markus. Ignition by hot turbulent jet Investigation of ignition process by hot jets (PTB, Braunschweig, Germany)
Prestellar core formation simulations in turbulent molecular clouds with large scale anisotropy Nicolas Petitclerc, James Wadsley and Alison Sills McMaster.
Phases et turbulence dans le milieu interstellaire Patrick Hennebelle Edouard Audit (CEA, Saclay) Shu-ichiro Inutsuka (Kyoto University), Robi Banerjee.
Generation of anisotropic turbulence in drifting proton-alpha plasmas Yana Maneva, S. Poedts CmPA, KU Leuven In collaboration with: A. Viñas and L. Ofman.
Introduction to the Turbulence Models
Nonequilibrium statistical mechanics of electrons in a diode
Correlations and Scale in Circumstellar Dust Shells
Molecules: Probes of the Interstellar Medium
Space Distribution of Spray Injected Fluid
Instructor: Gregory Fleishman
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

Interstellar Turbulence and hierarchical structuring Nicolas Décamp (Univ. della Calabria) Jacques Le Bourlot (Obs. de Paris)

Outline The context –Interstellar medium –Turbulence –Interstellar Turbulence The model –Velocity field synthesis –Coupling with the density field –Chemistry

The interstellar medium Dust and gas 10% of the stellar mass H:70%, He:28% (in mass) Diverse regions: Ionised, atomic and molecular regions Numerous processes: electromagnetic radiations, gravitation, magnetic field, chemistry, turbulence

Chemistry and time scales

Turbulence Kolmogorov 41 Scale exponent h=1/3 Structure functions:

Intermittency

Interstellar Turbulence High Reynolds number Non-thermic lines

Interstellar Turbulence High Reynolds number Non-thermic lines Ref: Falgarone E. et al., 1994, Ap. J., 436, 728

Interstellar Turbulence High Reynolds number Non-thermic lines Scale laws Cloud structure Effect of turbulent diffusion on chemistry Intermittency (CH+)

Evolution through scales of centroids velocity increments IRAM key-project Ref: Falgarone E., Panis J. F., Heithausen A. et al. 1998, A&A, 331, 669

Wavelets Local in position t 0 and space  t Wavelet coefficients Reconstruction

Analysis and synthesis of the velocity field Wavelet analysis => PDF at various scales From one scale to another: Propagator Log-normal model: 2 parameters Synthesis using this propagator. Ref: Arnéodo A., Muzy J.-F. & Roux S. G. 1997, J. Phys. II (France),7, 363

Synthesis of the velocity field Multi-resolution analysis –C j,k =approximation coefficient –D j,k =wavelet coefficient Cascade: M j follow the log-normal model

Comparison Model/Observation PDF of the velocity increments at various scales

Standard deviation of the velocity field as a function of scale

One-dimensional Model 2D velocity field Hypothesis: homogeneous, isotropic and stationary turbulence => 1D velocity field evolving with time Density field from the mass conservation equation

Density field

Density as a function of scale

For a realistic chemistry 35 species Bistability Example: T=10.3K and x= s -1 Ref: Le Bourlot J., Pineau des Forets G., Roueff E. 1995, A&A, 297, 251

Chemistry K 1 is temperature dependant and the reaction (4) is exothermic Normalisation: Equilibrium, Stability :

Different structures for the different species

Phase space and time scales

Conclusion Analysis and reconstruction of an interstellar turbulent velocity field with a small number of parameters. Test of eventual deviations / log-normal model => much larger maps Possible 2D or 3D generalisation Different distributions for different species without any external mechanism. More realistic chemistry…

First results