Dipolar interactions in F=1 ferromagnetic spinor condensates. Roton instabilities and possible supersolid phase Eugene Demler Harvard University Funded.

Slides:



Advertisements
Similar presentations
Dynamics of Spin-1 Bose-Einstein Condensates
Advertisements

Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard), Mehrtash Babadi (Harvard), Lode Pollet.
Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI Takuya Kitagawa Harvard University Mark Rudner Harvard University Erez Berg Harvard University Yutaka.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
Condensed Matter models for many-body systems of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov,
Hubbard model(s) Eugene Demler Harvard University Collaboration with
Interference experiments with ultracold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev,
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Nonequilibrium spin dynamics in systems of ultracold atoms Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Ehud Altman, Robert Cherng,
Multicomponent systems of ultracold atoms Eugene Demler Harvard University Dynamical instability of spiral states In collaboration with Robert Cherng,
Magnetism in ultracold Fermi gases and New physics with ultracold ions: many-body systems with non-equilibrium noise $$ NSF, AFOSR MURI, DARPA Harvard-MIT.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Spinor condensates beyond mean-field
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA Motivated by experiments of G.-B. Jo et al., Science (2009) Harvard-MIT David.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Interference between fluctuating condensates Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Eugene Demler - Harvard Vladimir.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Dipolar interactions and magnetoroton softening in spinor condensates Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Vladimir Gritsev.
Quantum simulator theory
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Eugene Demler Harvard University Strongly correlated many-body systems: from electronic materials to ultracold atoms to photons.
Nonequilibrium dynamics of ultracold atoms in optical lattices. Lattice modulation experiments and more Ehud Altman Weizmann Institute Peter Barmettler.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Nonequilibrium dynamics of interacting systems of cold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev,
Magnetism of spinor BEC in an optical lattice
Pairing and magnetism near Feshbach resonance $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT David Pekker (Harvard/Caltech) Mehrtash Babadi (Harvard) Lode.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Chap.3 A Tour through Critical Phenomena Youjin Deng
T. Kitagawa (Harvard), S. Pielawa (Harvard), D. Pekker (Harvard), R. Sensarma (Harvard/JQI), V. Gritsev (Fribourg), M. Lukin (Harvard), Lode Pollet (Harvard)
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
A. Krawiecki , A. Sukiennicki
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Symmetry Breaking in Scalar, Spinor, and Rotating Bose-Einstein condensates Hiroki Saito FB18 Aug. 24, 2006 Univ. of Electro-Communications, Japan Tokyo.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
The Color Glass Condensate and Glasma What is the high energy limit of QCD? What are the possible form of high energy density matter? How do quarks and.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Exploring many-body physics with synthetic matter
Dhevan Gangadharan UCLA STAR Collaboration DNP meeting 10/25/08 1.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Magnetic and Raman response properties in La2CuO4
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Part II New challenges in quantum many-body theory:
Dynamics of spinor condensates: dipolar interactions and more
Presentation transcript:

Dipolar interactions in F=1 ferromagnetic spinor condensates. Roton instabilities and possible supersolid phase Eugene Demler Harvard University Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaboration with Robert Cherng Thanks to Vladimir Gritsev, Dan Stamper-Kurn

Outline Introduction Dipolar interactions averaged over fast Larmor precession Instabilities: qualitative picture Instabilities: roton softening and phase diagram Instabilities of the spiral state

Introduction: Roton excitations and supersolid phase

Phase diagram of 4He Possible supersolid phase in 4 He A.F. Andreev and I.M. Lifshits (1969): Melting of vacancies in a crystal due to strong quantum fluctuations. Also G. Chester (1970); A.J. Leggett (1970) T. Schneider and C.P. Enz (1971). Formation of the supersolid phase due to softening of roton excitations

Resonant period as a function of T

Phases of bilayer quantum Hall systems at n=1 Hartree-Fock predicts roton softening and transition into the QH state with stripe order. Transport experiments suggest first order transition into a compressible state L. Brey and H. Fertig (2000) Eisenstein, Boebinger et al. (1994)

Phases of bilayer quantum Hall systems at n=1 and roton softening Raman scattering Pellegrini, Pinczuk et al. (2004) Roton softening and sharpening observed in Raman experiments. This is in conflict with transport measurements

Roton spectrum in pancake polar condensates Santos, Shlyapnikov, Lewenstein (2000) Fischer (2006) Origin of roton softening Repulsion at long distances Attraction at short distances Stability of the supersolid phase is a subject of debate

Magnetic dipolar interactions in spinor condensates Comparison of contact and dipolar interactions. Typical value a=100a B q For 87 Rb m =1/2 m B and e =0.007 For 52 Cr m =6 m B and e =0.16 Bose condensation of 52 Cr. T. Pfau et al. (2005) Review: Menotti et al., arXiv

Magnetic dipolar interactions in spinor condensates Interaction of F=1 atoms Ferromagnetic Interactions for 87 Rb Spin-depenent part of the interaction is small. Dipolar interaction may be important (D. Stamper-Kurn) a 2 -a 0 = a B A. Widera, I. Bloch et al., New J. Phys. 8:152 (2006)

Spontaneously modulated textures in spinor condensates Fourier spectrum of the fragmented condensate Vengalattore et al. PRL (2008)

This talk: Instabilities of F=1 spinor condensates due to dipolar interactions. New phenomena due to averaging over Larmor precession Theory: unstable modes in the regime corresponding to Berkeley experiments Results of Berkeley experiments Wide range of instabilities tuned by quadratic Zeeman, AC Stark shift, initial spiral spin winding

Instabilities of F=1 spinor condensates due to dipolar interactions and roton softening Earlier theoretical work on dipolar interactions in spinor condensates: Meystre et al. (2002), Ueda et. al. (2006), Lamacraft (2007). New phenomena: interplay of finite transverse size and dipolar interaction in the presence of fast Larmor precession

Dipolar interactions after averaging over Larmor precession

Energy scales S-wave Scattering Spin independent (g 0 n = kHz) Spin dependent (g s n = 10 Hz) Dipolar Interaction Anisotropic (g d n=10 Hz) Long-ranged Magnetic Field Larmor Precession (10 kHz) Quadratic Zeeman (0-20 Hz) B F Reduced Dimensionality Quasi-2D geometry

Dipolar interactions parallel to is preferred “Head to tail” component dominates Static interaction Averaging over Larmor precession z perpendicular to is preferred. “Head to tail” component is averaged with the “side by side”

Instabilities: qualitative picture

Stability of systems with static dipolar interactions Ferromagnetic configuration is robust against small perturbations. Any rotation of the spins conflicts with the “head to tail” arrangement Large fluctuation required to reach a lower energy configuration

XY components of the spins can lower the energy using modulation along z. Z components of the spins can lower the energy using modulation along x X Dipolar interaction averaged after precession “Head to tail” order of the transverse spin components is violated by precession. Only need to check whether spins are parallel Strong instabilities of systems with dipolar interactions after averaging over precession X

Instabilities: technical details

From Spinless to Spinor Condensates Spin mode: f determines spin orientation in the XY plane c determines longitudinal magnetization (Z-component) Charge mode: n is density and h is the overall phase

Hamiltonian S-wave Scattering Dipolar Interaction Magnetic FieldQuasi-2D

Precessional and Quasi-2D Averaging Gaussian Profile Rotating Frame Quasi-2D Time Averaged Dipolar Interaction

Collective Modes Spin Mode δf B – longitudinal magnetization δφ – transverse orientation Charge Mode δ n – 2D density δ η – global phase Mean Field Collective Fluctuations (Spin, Charge) δφδφ δfBδfB δηδη δnδn Ψ0Ψ0 Equations of Motion

Instabilities of collective modes Q measures the strength of quadratic Zeeman effect

Instabilities of collective modes

Berkeley Experiments: checkerboard phase M. Vengalattore, et. al, arXiv:

XY components of the spins can lower the energy using modulation along z. Z components of the spins can lower the energy using modulation along x X Dipolar interaction averaged after precession X

Instabilities of collective modes

Instabilities of collective modes. Spiral configurations Spiral wavelength Spiral spin winding introduces a separate branch of unstable modes

Instabilities of the spiral state Adiabatic limitSudden limit

Mean-field energy Inflection point suggests instability Uniform spiral Non-uniform spiral Negative value of shows that the system can lower its energy by making a non-uniform spiral winding

Conclusions Dipolar interactions crucial for spinor condensates… But effectively modified by quasi-2D and precession Variety of instabilities (ring, stripe, checkerboard) But what about the ground state?

Nature of transiton and ordered phases