Multifractal acceleration statistics in turbulence Benjamin Devenish Met Office, University of Rome L. Biferale, G. Boffetta, A. Celani, A.Lanotte, F.

Slides:



Advertisements
Similar presentations
Intermittency of MHD Turbulence A. Lazarian UW-Madison: Astronomy and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Special.
Advertisements

Fractal dimension of particle clusters in isotropic turbulence using Kinematic Simulation Dr. F. Nicolleau, Dr. A. El-Maihy and A. Abo El-Azm Contact address:
Heavy particles in turbulent flows Istituto di Scienze dell’Atmosfera e del Clima Alessandra Lanotte with: J. Bec, L. Biferale, G. Boffetta, A. Celani,
M.Cencini Inertial particles in turbulent flows Warwick, July 2006 Inertial particles in turbulence Massimo Cencini CNR-ISC Roma INFM-SMC Università “La.
Lecture 9 - Kolmogorov’s Theory Applied Computational Fluid Dynamics
Article from K. P. Zybin and V. A. Sirota Enrico Dammers & Christel Sanders Course 3T220 Chaos.
Statistical Mechanics (S.M.) on Turbulence* Sunghwan (Sunny) Jung Harry L. Swinney Physics Dept. University of Texas at Austin *Supported by ONR.
Revisiting Multifractality of High Resolution Temporal Rainfall: New Insights from a Wavelet-Based Cumulant Analysis Efi Foufoula-Georgiou ( Univ. of Minnesota.
September, Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.
Physical-Space Decimation and Constrained Large Eddy Simulation Shiyi Chen College of Engineering, Peking University Johns Hopkins University Collaborator:
Multifractals and Wavelets in Turbulence Cargese 2004 Luca Biferale Dept. of Physics, University of Tor Vergata, Rome. INFN-INFM
Anisotropic Pressure and Acceleration Spectra in Shear Flow Yoshiyuki Tsuji Nagoya University Japan Acknowledgement : Useful discussions and advices were.
Nanoflares and MHD turbulence in Coronal Loop: a Hybrid Shell Model Giuseppina Nigro, F.Malara, V.Carbone, P.Veltri Dipartimento di Fisica Università della.
Mean Velocities (Monday data). Mean Velocities (Friday data)
Inertial particles in self- similar random flows Jérémie Bec CNRS, Observatoire de la Côte d’Azur, Nice Massimo Cencini Rafaela Hillerbrand.
Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud.
Turbulence in Astrophysics (Theory)
DIPARTIMENTO DI FISICA Luca Sorriso-Valvo Sezione di Cosenza Intermittency in solar wind induced electric field Roberto Bruno Vincenzo Carbone.
Lagrangian dispersion of light solid particle in a high Re number turbulence; LES with stochastic process at sub-grid scales CNRS – UNIVERSITE et INSA.
Non-diffusive transport in pressure driven plasma turbulence D. del-Castillo-Negrete B. A. Carreras V. Lynch Oak Ridge National Laboratory USA 20th IAEA.
Interstellar Turbulence and hierarchical structuring Nicolas Décamp (Univ. della Calabria) Jacques Le Bourlot (Obs. de Paris)
Exit times and the generalised dispersion problem Benjamin Devenish and David Thomson Met Office, UK.
Stochastic geometry of turbulence Gregory Falkovich Weizmann Institute November 2014 D. Bernard, G. Boffetta, A.Celani, S. Musacchio, K. Turitsyn, M. Vucelja.
L ehrstuhl für Modellierung und Simulation Statistical theory of the isotropic turbulence (K-41 theory) 2. Kolmogorov theory Lecture 3 UNIVERSITY of ROSTOCK.
A LES-LANGEVIN MODEL B. Dubrulle Groupe Instabilite et Turbulence CEA Saclay Colls: R. Dolganov and J-P Laval N. Kevlahan E.-J. Kim F. Hersant J. Mc Williams.
The turbulent cascade in the solar wind Luca Sorriso-Valvo LICRYL – IPCF/CNR, Rende, Italy R. Marino, V. Carbone, R. Bruno, P. Veltri,
Structure functions and cancellation exponent in MHD: DNS and Lagrangian averaged modeling Pablo D. Mininni 1,* Jonathan Pietarila Graham 1, Annick Pouquet.
BREAK-UP OF AGGREGATES IN TURBULENT CHANNEL FLOW 1 Università degli Studi di Udine Centro Interdipartimentale di Fluidodinamica e Idraulica 2 Università.
Turbulent AU Structures Revealed by H 2 O and CH 3 OH Masers V. Strelnitski Maria Mitchell Observatory In collaboration with: J. Alexander, S. Gezari,
Massimo Cencini Massimo Cencini Clustering of Inertial particles in turbulent flowsLeiden, August 2006 Clustering of inertial particles in turbulence Massimo.
Scaling properties of the velocity turbulent field from micro-structure profiles in the ocean Xavier Sanchez Martin Elena Roget Armengol Jesus Planella.
0 Local and nonlocal conditional strain rates along gradient trajectories from various scalar fields in turbulence Lipo Wang Institut für Technische Verbrennung.
Particles in Turbulence Preliminary results from Lagrangian Acoustic Velocimetry M. Bourgoin, P. N. Qureshi, A. Cartellier, Y. Gagne, C. Baudet,
Ye Zhao, Zhi Yuan and Fan Chen Kent State University, Ohio, USA.
1 LES of Turbulent Flows: Lecture 11 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Fall 2014.
Signatures of Intermittent Turbulence in Hinode Quiet Sun Photosphere Valentina Abramenko, Big Bear Solar Observatory, USA, Plasma.
1 LES of Turbulent Flows: Lecture 6 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Cusp turbulence as revealed by POLAR magnetic field data E. Yordanova Uppsala, November, 2005.
Taylor’s Hypothesis: Frozen Turbulence (Stull, 1988, p. 5) Turbulent flow can be viewed as a collection of eddies that evolve in time and space as they.
ON MULTISCALE THEORY OF TURBULENCE IN WAVELET REPRESENTATION M.V.Altaisky
1 Multi-spacecraft, multi-scale investigation of intermittency and multifractal structure of turbulence in the terrestrial magnetosheath M. Echim (1,2),
What Do We Know About MHD Turbulence?
An ATD Model that Incorporates Uncertainty R. Ian Sykes Titan Research & Technology Div., Titan Corp. 50 Washington Road Princeton NJ OFCM Panel Session.
Physics of turbulence at small scales Turbulence is a property of the flow not the fluid. 1. Can only be described statistically. 2. Dissipates energy.
I m going to talk about my work in last 2 years
The State of the Art in Hydrodynamic Turbulence: Past Successes and Future Challenges Itamar Procaccia The Weizmann Institute of Science Rehovot, Israel.
Turbulence in the magnetosphere studied with CLUSTER data : evidence of intermittency Lamy H. 1, Echim M. 1,2, Darrouzet F. 1, Lemaire J. 3, Décréau P.
Adaptive Optics in the VLT and ELT era Atmospheric Turbulence
Ocean Surface Current Observations in PWS Carter Ohlmann Institute for Computational Earth System Science, University of California, Santa Barbara, CA.
Haitao Xu, Nicholas T. Ouellette, and Eberhard Bodenschatz August 28, 2006, Stirring & Mixing, Leiden Experimental Measurements of the Multifractal Dimension.
Relative dispersion & Richardson’s constant Brian Sawford Dept. Mechanical Engineering Monash University PK Yeung and Jason Hackl Georgia Tech.
Reynolds Stress Constrained Multiscale Large Eddy Simulation for Wall-Bounded Turbulence Shiyi Chen Yipeng Shi, Zuoli Xiao, Suyang Pei, Jianchun Wang,
Compressibility and scaling in the solar wind as measured by ACE spacecraft Bogdan A. Hnat Collaborators: Sandra C. Chapman and George Rowlands; University.
Chapter 4 Kinematics of Fluid Motion 1. 2 §4.1 The Velocity field 3.
Spectrum and small-scale structures in MHD turbulence Joanne Mason, CMSO/University of Chicago Stanislav Boldyrev, CMSO/University of Madison at Wisconsin.
1 LES of Turbulent Flows: Lecture 13 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
turbulent open channel flow
Objective Introduce Reynolds Navier Stokes Equations (RANS)
EULERIAN AND LAGRANGIAN STATISTICS FROM HIGH RESOLUTION DNS
Introduction to the Turbulence Models
Introduction to Symmetry Analysis
Connecting Observations With Theory
C. F. Panagiotou and Y. Hasegawa
Intermittency and clustering in a system of self-driven particles
Mean and Fluctuating Quantities
Characteristics of Turbulence:
Nat. Rev. Cardiol. doi: /nrcardio
Objective Discus Turbulence
G. Falkovich Leiden, August 2006
Singular structure at the turbulent/non-turbulent interface of a jet
Presentation transcript:

Multifractal acceleration statistics in turbulence Benjamin Devenish Met Office, University of Rome L. Biferale, G. Boffetta, A. Celani, A.Lanotte, F. Toschi

Intermittency K41 Kolmogorov (1941) Landau’s objection - fluctuating energy dissipation Kolmogorov’s refined hypothesis (1962) Random beta model Multifractal model Eulerian velocity structure function

Multifractal formalism (1) Frisch (1995)

Multifractal formalism (2) Eulerian reference frame Lagrangian reference frame - time scale of eddy of scale r - velocity difference at scale r Fractal dimension Superposition of contributions from eddies of all sizes Contributions from eddies smaller than scale r are uncorrelated Fluctuating Universal

Acceleration in multifractal framework Acceleration Fluctuating Kolmogorov scale

Acceleration pdf (1) Pdf of acceleration Probabililty of observing h in Pdf of large scale velocity

Acceleration pdf (2) Multifractal K41 (h=1/3, D(h) = 3) No additional free parameters D(h) derived from She-Leveque model

Direct numerical simulation Homogeneous isotropic turbulence cubic lattice Taylor-scale Reynolds number Two million Lagrangian particles Sampling rate

Acceleration pdf (3) K41 prediction Multifractal prediction

Conditional acceleration variance Acceleration variance conditional on velocity Lagrangian stochastic models

Conditional acceleration variance Multifractal prediction B.L. Sawford et al., Phys. Fluids 15, 3478 (2003).

Lagrangian structure functions Multifractal prediction for the Lagrangian structure functions where Same D(h) as in Eulerian model

Lagrangian structure functions P=8 P=6 P=4 Plotted using Extended Self Similarity Bottleneck at Multifractal Lagrangian exponents

Conclusions Acceleration exhibits fluctuations up to Multifractal formalism captures this behaviour with no additional free parameters Conditional acceleration variance Velocity structure functions only for Read more in Physical Review Letters vol. 93, no.6 p