1 Real-Time Optimization (RTO) In previous chapters we have emphasized control system performance for disturbance and set-point changes. Now we will be.

Slides:



Advertisements
Similar presentations
Nonlinear Programming McCarl and Spreen Chapter 12.
Advertisements

Lesson 08 Linear Programming
Session II – Introduction to Linear Programming
Chapter 2: Modeling with Linear Programming & sensitivity analysis
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 One-Dimensional Unconstrained Optimization Chapter.
Introducción a la Optimización de procesos químicos. Curso 2005/2006 BASIC CONCEPTS IN OPTIMIZATION: PART II: Continuous & Unconstrained Important concepts.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Managerial Decision Modeling with Spreadsheets
Lecture 8 – Nonlinear Programming Models Topics General formulations Local vs. global solutions Solution characteristics Convexity and convex programming.
OPTIMAL CONTROL SYSTEMS
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
1 Chapter 8: Linearization Methods for Constrained Problems Book Review Presented by Kartik Pandit July 23, 2010 ENGINEERING OPTIMIZATION Methods and Applications.
ENGR 351 Numerical Methods Instructor: Dr. L.R. Chevalier
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
Optimization Linear Programming and Simplex Method
Linear Programming Econ Outline  Review the basic concepts of Linear Programming  Illustrate some problems which can be solved by linear programming.
Overall Objectives of Model Predictive Control
Linear-Programming Applications
Solving Linear Programming Problems Using Excel Ken S. Li Southeastern Louisiana University.
Introduction to Optimization (Part 1)
Linear Programming Models: Graphical and Computer Methods
UNCONSTRAINED MULTIVARIABLE
Chapter 19 Linear Programming McGraw-Hill/Irwin
ERT 210/4 Process Control & Dynamics
Real-Time Optimization (RTO) In previous chapters we have emphasized control system performance for load and set-point changes. Now we will be concerned.
Energy Use in Distillation Operation: Nonlinear Economic Effects IETC 2010 Spring Meeting.
1 Chapter 8 Nonlinear Programming with Constraints.
ENCI 303 Lecture PS-19 Optimization 2
84 b Unidimensional Search Methods Most algorithms for unconstrained and constrained optimisation use an efficient unidimensional optimisation technique.
STDM - Linear Programming 1 By Isuru Manawadu B.Sc in Accounting Sp. (USJP), ACA, AFM
1 DSCI 3023 Linear Programming Developed by Dantzig in the late 1940’s A mathematical method of allocating scarce resources to achieve a single objective.
Nonlinear Programming (NLP) Operation Research December 29, 2014 RS and GISc, IST, Karachi.
Optimization of Process Flowsheets S,S&L Chapter 24 T&S Chapter 12 Terry A. Ring CHEN 5253.
Chapter 7 Optimization. Content Introduction One dimensional unconstrained Multidimensional unconstrained Example.
1 Chapter 7 Linear Programming. 2 Linear Programming (LP) Problems Both objective function and constraints are linear. Solutions are highly structured.
Engineering Optimization Second Edition Authors: A. Rabindran, K. M. Ragsdell, and G. V. Reklaitis Chapter-1 (Introduction) Presenter: Pulak Chowdhury.
Composite Washing of Coals from Multiple Sources dr kalyan sen, Director, Central Fuel Research Institute, Dhanbad, 2001 Composite Washing of Coals from.
Process Optimization By Dr : Mona Ossman.
Introduction to Process Control
Computer Animation Rick Parent Computer Animation Algorithms and Techniques Optimization & Constraints Add mention of global techiques Add mention of calculus.
Risk Analysis & Modelling
Introduction to Process Control Prepared by; Mrs Azduwin Binti Khasri Chapter 1 ERT 321 PROCESS CONTROL & DYNAMICS.
Introduction to linear programming:- - Linear programming (LP) applies to optimization models in which the objective and constraints functions are strictly.
1 Iterative Integer Programming Formulation for Robust Resource Allocation in Dynamic Real-Time Systems Sethavidh Gertphol and Viktor K. Prasanna University.
Chapter 20 1 Overall Objectives of Model Predictive Control 1.Prevent violations of input and output constraints. 2.Drive some output variables to their.
1 Ref: Seider et al, Product and process design principles, 2 nd ed., Chapter 4, Wiley, 2004.
Operational Research & ManagementOperations Scheduling Economic Lot Scheduling 1.Summary Machine Scheduling 2.ELSP (one item, multiple items) 3.Arbitrary.
1 Self-optimizing control From key performance indicators to control of biological systems Sigurd Skogestad Department of Chemical Engineering Norwegian.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
1 Optimization Techniques Constrained Optimization by Linear Programming updated NTU SY-521-N SMU EMIS 5300/7300 Systems Analysis Methods Dr.
ERT 210/4 Process Control & Dynamics DYNAMIC BEHAVIOR OF PROCESSES :
LINEAR PROGRAMMING. Linear Programming Linear programming is a mathematical technique. This technique is applied for choosing the best alternative from.
Linear Programming. George Dantzig 1947 NarendraKarmarkar Pioneers of LP.
1 Self-optimizing control From key performance indicators to control of biological systems Sigurd Skogestad Department of Chemical Engineering Norwegian.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 2 - Chapter 7 Optimization.
1 Optimization Linear Programming and Simplex Method.
PROCESS DESIGN DEVELOPMENT
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Chapter 20 Model Predictive Control (MPC) from Seborg, Edgar, Mellichamp, Process Dynamics and Control, 2nd Ed 1 rev. 2.1 of May 4, 2016.
Linear Programming.
Chapter 12: Kay and Edwards
Engineering Economics (2+0)
Process Dynamics Refers to unsteady-state or transient behavior.
Overall Objectives of Model Predictive Control
Optimization of Process Flowsheets
Chapter 7 Optimization.
Part 4 - Chapter 13.
CH EN 5253 – Process Design II
What are optimization methods?
Linear Programming.
Presentation transcript:

1 Real-Time Optimization (RTO) In previous chapters we have emphasized control system performance for disturbance and set-point changes. Now we will be concerned with how the set points are specified. In real-time optimization (RTO), the optimum values of the set points are re-calculated on a regular basis (e.g., every hour or every day). These repetitive calculations involve solving a constrained, steady-state optimization problem. Necessary information: 1.Steady-state process model 2.Economic information (e.g., prices, costs) 3.A performance Index to be maximized (e.g., profit) or minimized (e.g., cost). Note: Items # 2 and 3 are sometimes referred to as an economic model. Chapter 19

2 Process Operating Situations That Are Relevant to Maximizing Operating Profits Include: 1.Sales limited by production. 2.Sales limited by market. 3.Large throughput. 4.High raw material or energy consumption. 5.Product quality better than specification. 6.Losses of valuable or hazardous components through waste streams. Chapter 19

Common Types of Optimization Problems 1. Operating Conditions Distillation column reflux ratio Reactor temperature 2. Allocation Fuel use Feedstock selection 3. Scheduling Cleaning (e.g., heat exchangers) Replacing catalysts Batch processes Chapter 19 3

Figure 19.1 Hierarchy of process control activities. 4

5 BASIC REQUIREMENTS IN REAL-TIME OPTIMIZATION Chapter 19 Both the operating and economic models typically will include constraints on: 1. Operating Conditions 2. Feed and Production Rates 3. Storage and Warehousing Capacities 4. Product Impurities Objective Function:

6 The Interaction Between Set-point Optimization and Process Control Example: Reduce Process Variability Excursions in chemical composition => off-spec products and a need for larger storage capacities. Reduction in variability allows set points to be moved closer to a limiting constraint, e.g., product quality. Chapter 19

7

8 The Formulation and Solution of RTO Problems 1.The economic model: An objective function to be maximized or minimized, that includes costs and product values. 2.The operating model: A steady-state process model and constraints on the process variables. Chapter 19

9 The Formulation and Solution of RTO Problems Table 19.1 Alternative Operating Objectives for a Fluidized Catalytic Cracker Chapter 19 1.Maximize gasoline yield subject to a specified feed rate. 2.Minimize feed rate subject to required gasoline production. 3.Maximize conversion to light products subject to load and compressor/regenerator constraints. 4.Optimize yields subject to fixed feed conditions. 5.Maximize gasoline production with specified cycle oil production. 6.Maximize feed with fixed product distribution. 7.Maximize FCC gasoline plus olefins for alkylate.

Selection of Processes for RTO Sources of Information for the Analysis: 1. Profit and loss statements for the plant Sales, prices Manufacturing costs etc. 2. Operating records Material and energy balances Unit efficiencies, production rates, etc. Categories of Interest: 1. Sales limited by production Increases in throughput desirable Incentives for improved operating conditions and schedules. 2. Sales limited by market Seek improvements in efficiency. Example: Reduction in manufacturing costs (utilities, feedstocks) 3. Large throughput units Small savings in production costs per unit are greatly magnified. Chapter 19 10

11 The Formulation and Solution of RTO Problems Step 1. Identify the process variables. Step 2. Select the objective function. Step 3. Develop the process model and constraints. Step 4. Simplify the model and objective function. Step 5. Compute the optimum. Step 6. Perform sensitivity studies. Example 19.1 Chapter 19 11

12 Chapter 19

13 Chapter 19 UNCONSTRAINED OPTIMIZATION The simplest type of problem No inequality constraints An equality constraint can be eliminated by variable substitution in the objective function.

14 Single Variable Optimization A single independent variable maximizes (or minimizes) an objective function. Examples: 1. Optimize the reflux ratio in a distillation column 2. Optimize the air/fuel ratio in a furnace. Typical Assumption: The objective function f (x) is unimodal with respect to x over the region of the search. –Unimodal Function: For a maximization (or minimization) problem, there is only a single maximum (or minimum) in the search region. Chapter 19

15 Different Types of Objective Functions

One Dimensional Search Techniques Selection of a method involves a trade-off between the number of objective function evaluations (computer time) and complexity. 1. "Brute Force" Approach Small grid spacing (  x) and evaluate f(x) at each grid point  can get close to the optimum but very inefficient. 2. Newton’s Method Chapter 19 16

1.Fit a quadratic polynomial, f (x) = a 0 +a 1 x+a 2 x 2, to three data points in the interval of uncertainty. Denote the three points by x a, x b, and x c, and the corresponding values of the function as f a, f b, and f c. 2.Find the optimum value of x for this polynomial: Chapter Quadratic Polynomial fitting technique 4.Evaluate f (x*) and discard the x value that has the worst value of the objective function. (i.e., discard either x a, x b, or x c ). 5.Choose x* to serve as the new, third point. 6.Repeat Steps 1 to 5 until no further improvement in f (x*) occurs. 17

18 Case 1: The maximum lies in (x 2, b). Case 2: The maximum lies in (x 1, x 3 ). Chapter 19 Equal Interval Search: Consider two cases

Multivariable Unconstrained Optimization Computational efficiency is important when N is large. "Brute force" techniques are not practical for problems with more than 3 or 4 variables to be optimized. Typical Approach: Reduce the multivariable optimization problem to a series of one dimensional problems: (1) From a given starting point, specify a search direction. (2) Find the optimum along the search direction, i.e., a one-dimensional search. (3) Determine a new search direction. (4) Repeat steps (2) and (3) until the optimum is located Two general categories for MV optimization techniques: (1) Methods requiring derivatives of the objective function. (2) Methods that do not require derivatives. Chapter 19 19

Constrained Optimization Problems Optimization problems commonly involve equality and inequality constraints. Nonlinear Programming (NLP) Problems: a. Involve nonlinear objective function (and possible nonlinear constraints). b. Efficient off-line optimization methods are available (e.g., conjugate gradient, variable metric). c. On-line use? May be limited by computer execution time and storage requirements. Quadratic Programming (QP) Problems: a. Quadratic objective function plus linear equality and inequality constraints. b. Computationally efficient methods are available. Linear Programming (QP) Problems: a. Both the objective function and constraints are linear. b. Solutions are highly structured and can be rapidly obtained. Chapter 19 20

Chapter 19 Most LP applications involve more than two variables and can involve 1000s of variables. So we need a more general computational approach, based on the Simplex method. There are many variations of the Simplex method. One that is readily available is the Excel Solver. Recall the basic features of LP problems: Linear objective function Linear equality/inequality constraints LP Problems (continued) 21

Linear Programming (LP) Has gained widespread industrial acceptance for on-line optimization, blending etc. Linear constraints can arise due to: 1. Production limitation: e.g. equipment limitations, storage limits, market constraints. 2. Raw material limitation 3. Safety restrictions: e.g. allowable operating ranges for temperature and pressures. 4. Physical property specifications: e.g. product quality constraints when a blend property can be calculated as an average of pure component properties: Chapter 19 22

5. Material and Energy Balances - Tend to yield equality constraints. - Constraints can change frequently, e.g. daily or hourly. Effect of Inequality Constraints - Consider the linear and quadratic objective functions on the next page. - Note that for the LP problem, the optimum must lie on one or more constraints. Solution of LP Problems - Simplex Method - Examine only constraint boundaries - Very efficient, even for large problems Chapter 19 23

24 Linear Programming Concepts For a linear process model, y=Ku (19-18) Chapter 19

25

Chapter 19 26

Chapter 19 27

Chapter 19 28

Chapter 19 29

Chapter 19 30

Chapter 19 31

Chapter 19 32

Chapter 19 33

Chapter 19 34

Chapter 19 35

Chapter 19 36

37 QUADRATIC AND NONLINEAR PROGRAMMING The most general optimization problem occurs when both the objective function and constraints are nonlinear, a case referred to as nonlinear programming (NLP). The leading constrained optimization methods include: 1.Quadratic programming 2.Generalized reduced gradient 3.Successive quadratic programming (SQP) 4.Successive linear programming (SLP) Chapter 19

38 Quadratic Programming A quadratic programming problem minimizes a quadratic function of n variables subject to m linear inequality or equality constraints. In compact notation, the quadratic programming problem is Chapter 19 where c is a vector (n x 1), A is an m x n matrix, and Q is a symmetric n x n matrix.

39 Nonlinear Programming Chapter 19 a)Constrained optimum: The optimum value of the profit is obtained when x=x a. Implementation of an active constraint is straight- forward; for example, it is easy to keep a valve closed. b)Unconstrained flat optimum: In this case the profit is insensitive to the value of x, and small process changes or disturbances do not affect profitability very much. c)Unconstrained sharp optimum: A more difficult problem for implementation occurs when the profit is sensitive to the value of x. If possible, we may want to select a different input variable for which the corresponding optimum is flatter so that the operating range can be wider.

Chapter 19 Nonlinear Programming (NLP) Example - nonlinear objective function - nonlinear constraints 40