1 Boyer and Moore Algorithm Adviser: R. C. T. Lee Speaker: H. M. Chen A fast string searching algorithm. Communications of the ACM. Vol. 20 p.p. 762-772,

Slides:



Advertisements
Similar presentations
1 Average Case Analysis of an Exact String Matching Algorithm Advisor: Professor R. C. T. Lee Speaker: S. C. Chen.
Advertisements

Tuned Boyer Moore Algorithm
© 2004 Goodrich, Tamassia Pattern Matching1. © 2004 Goodrich, Tamassia Pattern Matching2 Strings A string is a sequence of characters Examples of strings:
Space-for-Time Tradeoffs
Advisor: Prof. R. C. T. Lee Speaker: C. W. Lu
1 The MaxSuffix-Matching Algorithm On maximal suffixes and constant-space versions of KMPalgorithm LATIN 2002: Theoretical Informatics : 5th Latin American.
3 -1 Chapter 3 String Matching String Matching Problem Given a text string T of length n and a pattern string P of length m, the exact string matching.
Lecture 27. String Matching Algorithms 1. Floyd algorithm help to find the shortest path between every pair of vertices of a graph. Floyd graph may contain.
1 Fastest Approach to Exact Pattern Matching Date:102/3/13 Publisher:Information and Emerging Technologies (ICIET), 2010 Information and Emerging Technologies.
1 A simple fast hybrid pattern- matching algorithm Department of Computer Science and Information Engineering National Cheng Kung University, Taiwan R.O.C.
1 Morris-Pratt algorithm Advisor: Prof. R. C. T. Lee Reporter: C. S. Ou A linear pattern-matching algorithm, Technical Report 40, University of California,
Goodrich, Tamassia String Processing1 Pattern Matching.
Advisor: Prof. R. C. T. Lee Reporter: Z. H. Pan
Advisor: Prof. R. C. T. Lee Speaker: Y. L. Chen
1 The Colussi Algorithm Advisor: Prof. R. C. T. Lee Speaker: Y. L. Chen Correctness and Efficiency of Pattern Matching Algorithms Information and Computation,
1 Reverse Factor Algorithm Advisor: Prof. R. C. T. Lee Speaker: L. C. Chen Speeding up on two string matching algorithms, Algorithmica, Vol.12, 1994, pp
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology Bioinformatics Algorithms and Data Structures Chapter 2: Boyer-Moore Algorithm.
1 Advisor: Prof. R. C. T. Lee Speaker: G. W. Cheng Two exact string matching algorithms using suffix to prefix rule.
1 Rules in Exact String Matching Algorithms 李家同. 2 The Exact String Matching Problem: We are given a text string and a pattern string and we want to find.
1 String Matching Algorithms Based upon the Uniqueness Property Advisor : Prof. R. C. T. Lee Speaker : C. W. Lu C. W. Lu and R. C. T. Lee, 2007, String.
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology Bioinformatics Algorithms and Data Structures Chapter 2: KMP Algorithm Lecturer:
Boyer-Moore string search algorithm Book by Dan Gusfield: Algorithms on Strings, Trees and Sequences (1997) Original: Robert S. Boyer, J Strother Moore.
1 Rules in Exact String Matching Algorithms 李家同. 2 The Exact String Matching Problem: We are given a text string and a pattern string and we want to find.
1 Two Way Algorithm Advisor: Prof. R. C. T. Lee Speaker: C. C. Yen Two-way string-matching Journal of the ACM 38(3): , 1991 Crochemore M., Perrin.
Boyer-Moore Algorithm 3 main ideas –right to left scan –bad character rule –good suffix rule.
A Fast String Searching Algorithm Robert S. Boyer, and J Strother Moore. Communication of the ACM, vol.20 no.10, Oct
1 KMP Skip Search Algorithm Advisor: Prof. R. C. T. Lee Speaker: Z. H. Pan Very Fast String Matching Algorithm for Small Alphabets and Long Patterns, Christian,
Smith Algorithm Experiments with a very fast substring search algorithm, SMITH P.D., Software - Practice & Experience 21(10), 1991, pp Adviser:
1 Morris-Pratt Algorithm Advisor: Prof. R. C. T. Lee Speaker: C. W. Lu A linear pattern-matching algorithm, Technical Report 40, University of California,
1 KMP algorithm Advisor: Prof. R. C. T. Lee Reporter: C. W. Lu KNUTH D.E., MORRIS (Jr) J.H., PRATT V.R.,, Fast pattern matching in strings, SIAM Journal.
Quick Search Algorithm A very fast substring search algorithm, SUNDAY D.M., Communications of the ACM. 33(8),1990, pp Adviser: R. C. T. Lee Speaker:
Recuperació de la informació Modern Information Retrieval (1999) Ricardo-Baeza Yates and Berthier Ribeiro-Neto Flexible Pattern Matching in Strings (2002)
1 Rules in Exact String Matching Algorithms 李家同. 2 The Exact String Matching Problem: We are given a text string and a pattern string and we want to find.
The Zhu-Takaoka Algorithm
Reverse Colussi algorithm
Backward Nondeterministic DAWG Matching Algorithm
Algorithms and Data Structures. /course/eleg67701-f/Topic-1b2 Outline  Data Structures  Space Complexity  Case Study: string matching Array implementation.
1 Turbo-BM Algorithm Adviser: R. C. T. Lee Speaker: H. M. Chen Deux méthodes pour accélérer l'algorithme de Boyer-Moore, Théorie des Automates et Applications.,
1 Boyer-Moore Charles Yan Exact Matching Boyer-Moore ( worst-case: linear time, Typical: sublinear time ) Aho-Corasik ( A set of pattern )
Pattern Matching1. 2 Outline Strings Pattern matching algorithms Brute-force algorithm Boyer-Moore algorithm Knuth-Morris-Pratt algorithm.
A Fast Algorithm for Multi-Pattern Searching Sun Wu, Udi Manber May 1994.
1 Speeding up on two string matching algorithms Advisor: Prof. R. C. T. Lee Speaker: Kuei-hao Chen, CROCHEMORE, M., CZUMAJ, A., GASIENIEC, L., JAROMINEK,
Advisor: Prof. R. C. T. Lee Speaker: T. H. Ku
20/10/2015Applied Algorithmics - week31 String Processing  Typical applications: pattern matching/recognition molecular biology, comparative genomics,
Boyer Moore Algorithm Idan Szpektor. Boyer and Moore.
MCS 101: Algorithms Instructor Neelima Gupta
Exact String Matching Algorithms: A Survey Mehreen Ali, Hina Naz Khan, Shumaila Sayyab, Nadeem Iftikhar Department of Bio-Science Mohammad Ali Jinnah University,
Book: Algorithms on strings, trees and sequences by Dan Gusfield Presented by: Amir Anter and Vladimir Zoubritsky.
MCS 101: Algorithms Instructor Neelima Gupta
ICS220 – Data Structures and Algorithms Analysis Lecture 14 Dr. Ken Cosh.
1/39 COMP170 Tutorial 13: Pattern Matching T: P:.
Recuperació de la informació Modern Information Retrieval (1999) Ricardo-Baeza Yates and Berthier Ribeiro-Neto Flexible Pattern Matching in Strings (2002)
CSG523/ Desain dan Analisis Algoritma
Source : Practical fast searching in strings
Recuperació de la informació
13 Text Processing Hongfei Yan June 1, 2016.
Boyer and Moore Algorithm
Boyer and Moore Algorithm
Adviser: R. C. T. Lee Speaker: C. W. Cheng National Chi Nan University
Chapter 7 Space and Time Tradeoffs
Pattern Matching 12/8/ :21 PM Pattern Matching Pattern Matching
Pattern Matching 1/14/2019 8:30 AM Pattern Matching Pattern Matching.
KMP String Matching Donald Knuth Jim H. Morris Vaughan Pratt 1997.
Pattern Matching 2/15/2019 6:17 PM Pattern Matching Pattern Matching.
Knuth-Morris-Pratt Algorithm.
Chap 3 String Matching 3 -.
Pattern Matching Pattern Matching 5/1/2019 3:53 PM Spring 2007
Pattern Matching 4/27/2019 1:16 AM Pattern Matching Pattern Matching
Space-for-time tradeoffs
Sequences 5/17/ :43 AM Pattern Matching.
Presentation transcript:

1 Boyer and Moore Algorithm Adviser: R. C. T. Lee Speaker: H. M. Chen A fast string searching algorithm. Communications of the ACM. Vol. 20 p.p , BOYER, R.S. and MOORE, J.S.

2 The algorithm compares the pattern P with the substring of sequence T within a sliding window in the right-to-left order. The bad character rule and good suffix rule are used to determine the movement of sliding window. Boyer and Moore Algorithm

3 Bad Character Rule Suppose that P 1 is aligned to T s now, and we perform a pair-wise comparing between text T and pattern P from right to left. Assume that the first mismatch occurs when comparing T s+j-1 with P j. Since T s+j-1 ≠ P j, we move the pattern P to the right such that the largest position c in the left of P j is equal to T s+j-1. We can shift the pattern at least (j-c) positions right. Pxyt Txt Pxyt s jm 1 c jm 1 Shift s +j -1

4 Rule 2-1: Character Matching Rule (A Special Version of Rule 2) Bad character rule uses Rule 2-1 (Character Matching Rule). For any character x in T, find the nearest x in P which is to the left of x in T.

5 Implication of Rule 2-1 Case 1. If there is a x in P to the left of T, move P so that the two x’s match.

6 Case 2: If no such a x exists in P, consider the partial window defined by x in T and the string to the left of it.

TAAAAAATCACATTAGCAAAA PATCACAGTATCA s=6 PATCACAGTATCA Ex: Suppose that P 1 is aligned to T 6 now. We compare pair- wise between T and P from right to left. Since T 16,17 = P 11,12 = “CA” and T 15 =“G” ≠P 10 = “T”. Therefore, we find the rightmost position c=7 in the left of P 10 in P such that P c is equal to “G” and we can move the window at least (10-7=3) positions. m=12 j=10c mismatch directing of the scan

8 Good Suffix Rule 1 If a mismatch occurs in T s+j-1, we match T s+j-1 with P j’-m+j, where j’ (m-j+1 ≦ j’ < m) is the largest position such that (1) P j+1,m is a suffix of P 1,j’ (2) P j’-(m-j) ≠P j. We can move the window at least (m-j’) position(s). Pztyt Txt Pztyt s Shift s+j-1 jj’m1j’-m+j jj’m1j’-m+j z≠y

9 Rule 2: The Substring Matching Rule For any substring u in T, find a nearest u in P which is to the left of it. If such a u in P exists, move P; otherwise, we may define a new partial window.

10 Ex: Suppose that P 1 is aligned to T 6 now. We compare pair- wise between P and T from right to left. Since T 16,17 = “CA” = P 11,12 and T 15 =“A” ≠P 10 = “T”. We find the substring “CA” in the left of P 10 in P such that “CA” is the suffix of P 1,6 and the left character to this substring “CA” in P is not equal to P 10 = “T”. Therefore, we can move the window at least m-j’ (12-6=6) positions right TAAAAAAGCCTAGCAACAAAA PATCACATCATCA j=10 s=6 j’=6 s+j-1 Shift PATCACATCATCA m=12 mismatch A≠T

11 Good Suffix Rule 2 If a mismatch occurs in T s+j-1, we match T s+m-j’ with P 1, where j’ (1 ≦ j’ ≦ m-j) is the largest position such that P 1,j’ is a suffix of P j+1,m. Txt Pt’yt s j’jm1 Shift s+j-1 s+m-j’ j’jm1 P.S. : t’ is suffix of substring t. Pt’yt Good Suffix Rule 2 is used only when Good Suffix Rule 1 can not be used. That is, t does not appear in P(1, j). Thus, t is unique in P.

12 Rule 3-1: Unique Substring Rule The substring u appears in P exactly once. If the substring u matches with T i,j, no matter whether a mismatch occurs in some position of P or not, we can slide the window by l. T: P: The string s is the longest prefix of P which equals to a suffix of u. s ss su ij l u u

13 Rule 1: The Suffix to Prefix Rule For a window to have any chance to match a pattern, in some way, there must be a suffix of the window which is equal to a prefix of the pattern. T P

14 Note that the above rule also uses Rule 1. It should also be noted that the unique substring is the shorter and the more right- sided the better. A short u guarantees a short (or even empty) s which is desirable. u ss su i j l u

15 Ex: Suppose that P 1 is aligned to T 6 now. We compare pair-wise between P and T from right to left. Since T 12 ≠ P 7 and there is no substring P 8,12 in left of P 8 to exactly match T 13,17. We find a longest suffix “AATC” of substring T 13,17, the longest suffix is also prefix of P. We shift the window such that the last character of prefix substring to match the last character of the suffix substring. Therefore, we can shift at least 12-4=8 positions TAAAAAATCACATTAATCAAA PAATCATCTAATC j=7 s=6 j’=4 PAATCATCTAATC m=12 Shift mismatch j=7j’=4m=12

16 Let Bc(a) be the rightmost position of a in P. The function will be used for applying bad character rule. We can move our pattern right at least j-B(T s+j-1 ) position by above Bc function. Σ ACGT B j PATCACATCATCA j PATCACATCATCA j TAGCTAGCCTGCACGTACA Move at least 10-B(G) = 10 positions

17 Let Gs(j) be the largest number of shifts by good suffix rule when a mismatch occurs for comparing P j with some character in T.

18 gs 1 (j) be the largest k such that P j+1,m is a suffix of P 1,k and P k-m+j ≠ P j, where m-j+1 ≦ k<m ; 0 if there is no such k. (gs 1 is for Good Suffix Rule 1) gs 2 (j) be the largest k such that P 1,k is a suffix of P j+1,m, where 1 ≦ k ≦ m-j; 0 if there is no such k. (gs 2 is for Good Suffix Rule 2.) Gs(j) = m – max{gs 1, gs 2 }, if j = m,Gs(j)=1. j P ATCACATCATCA gs gs Gs gs 1 (7)=9 ∵ P 8,12 is a suffix of P 1,9 and P 4 ≠ P 7 gs 2 (7)=4 ∵ P 1,4 is a suffix of P 8,12

19 How do we obtain gs 1 and gs 2 ? In the following, we shall show that by constructing the Suffix Function, we can kill two birds with one arrow.

20 Suffix function f’ For 1 ≦ j ≦ m-1, let the suffix function f’(j) for P j be the smallest k such that P k,m = P j+1,m-k+j+1 ; ( j+2 ≦ k ≦ m) –If there is no such k, we set f’ = m+1. –If j=m, we set f’(m)=m+2. Ex: Ptt j+1kmj j+1,m-k+j+1 j P ATCACATCATCA f’ f’(4)=8, it means that P f’(4),m = P 8,12 = P 5,9 =P 4+1,4+1+m-f’(4) Since there is no k for 13= j+2 ≦ k ≦ 12, we set f’(11)=13.

21 Suppose that the Suffix is obtained. How can we use it to obtain gs 1 and gs 2 ? gs 1 can be obtained by scanning the Suffix function from right to left.

22 j P ATCACATCATCA f’ TGATCGATCAATCATCACATGATCA PATCACATCATCA Example

23 As for Good Suffix Rule 2, it is relatively easier. j P ATCACATCATCA f’ Example

24 Question: How can we construct the Suffix function? To explain this, let us go back to the prefix function used in the MP Algorithm.

25 The following figure illustrates the prefix function in the MP Algorithm. The following figure illustrates the suffix function of the BM Algorithm. P P

26 We now can see that actually the suffix function is the same as the prefix. The only difference is now we consider a suffix. Thus, the recursive formula for the prefix function in MP Algorithm can be slightly modified for the suffix function in BM Algorithm.

27 The formula of suffix function f’ as follows :

28 j P ATCACATCATCA f’ 14 j=m=12, f’=m+2=14 No k satisfies P j+1 =P f’ k (j+1)-1, f’=m+1=12+1=13 j P ATCACATCATCA f’ 1314 k =1  P 12 ≠ P 13

29 No k satisfies P j+1 =P f’ k (j+1)-1, f’=m+1=12+1=13 j P ATCACATCATCA f’ No k satisfies P j+1 =P f’ k (j+1)-1, f’=m+1=12+1=13 j P ATCACATCATCA f’ k =1  P 11 ≠ P 12 k =1  P 10 ≠ P 12

30 ∵ P j+1 = P f’(j+1)-1 => P 9 = P 12, f’ = f’(j+1) - 1= = 12 j P ATCACATCATCA f’ ∵ P j+1 = P f’(j+1)-1 => P 8 = P 11, f’ = f’(j+1) - 1= = 11 j P ATCACATCATCA f’

31 ∵ P j+1 = P f’ 1 (j+1)-1 => P 5 = P 8, f’ = f’(j+1) - 1= = 8 j P ATCACATCATCA f’ ∵ P j+1 = P f’ 3 (j+1)-1 => P 4 = P f’ 3 (4)-1 = P 12, f’ = f’ 3 (j+1) - 1= = 12 j P ATCACATCATCA f’

32 ∵ P j+1 = P f’(j+1)-1 => P 3 = P f’(3)-1 = P 11, f’ = f’(j+1) - 1= = 11 j P ATCACATCATCA f’ ∵ P j+1 = P f’(j+1)-1 => P 2 = P f’(2)-1 = P 10, f’ = f’(j+1) - 1= = 10 j P ATCACATCATCA f’

33 Let G’(j), 1 ≦ j ≦ m,to be the largest number of shifts by good suffix rules. First, we set G’(j) to zeros as their initializations. j P ATCACATCATCA f’ G’

34 Step1: We scan from right to left and gs 1 (j) is determined during the scanning, then gs 1 (j) >= gs 2 (j)  When j=12, t=13. t > m.  When j=11, t=12. Since P 11 =‘C’≠ ‘A’= P 12, G’(t) = m – max{gs 1 (t), gs 2 (t)} = m – gs 1 (t) = f’(j) – 1 – j => G’(12)= = 1. j P ATCACATCATCA f’ G’ Observe: If P j =P 4 ≠P 7 =P f’(j)-1, we know gs 1 (f’(j)-1)=m+j-f’(j)+1=9. If t = f’(j)-1 ≦ m and P j ≠ P t, G’(t) = m-gs 1 (f’(j)-1) = f’(j) – 1 – j. f’ (k) (x)=f’ (k-1) (f’(x) – 1), k ≥ 2

35  When j=10, t=12. Since P 10 =‘T’≠‘A’ =P 12, G’(12) ≠0.  When j=9, t=12. P 9 = ‘A’ =P 12.  When j=8, t=11. P 8 = ‘C’ =P 11.  When j=7, t=10. P 7 = ‘T’ =P 10  When j=6, t=9. P 6 = ‘A’ =P 9  When j=5, t=8. P 5 = ‘C’ =P 8  When j=4, t=7. Since P 4 = ‘A’ ≠ P 7 = ‘T’, G’(7) = 8 – 1 – 4= 3 j P ATCACATCATCA f’ G’ Besides, t = f’ (2) (4) – 1=f’(f’(4) – 1) – 1=10. Since P 4 = ‘A’≠P 10 = ‘T’, G’(10) =f’(7) – 1 – j= 11 – 1 – 4 = 6. If t = f’(j)-1 ≦ m and P j ≠P t, G’(t)=f’(j) – 1 – j. f’ (k) (x)=f’ (k-1) (f’(x) – 1), k ≥ 2

36  When j=3, t=11. P 3 =‘C’=P 11.  When j=2, t=10. P 2 =‘T’=P 10  When j=1, t=9. P 1 =‘A’=P 9. j P ATCACATCATCA f’ G’ By the above discussion, we can obtain the values using the Good Suffix Rule 1 by scanning the pattern from right to left. If t = f’(j)-1 ≦ m and P j ≠P t, G’(t)=f’(j) – 1 – j. f’ (k) (x)=f’ (k-1) (f’(x) – 1), k ≥ 2

37 Step2: Continuously, we will try to obtain the values using Good Suffix Rule 2 and those values are still zeros now and scan from left to right. j P ATCACATCATCA f’ G’

38 j P ATCACATCATCA f’ G’ Let k’ be the smallest k in {1,…,m} such that P f’ (k) (1)-1 = P 1 and f’ (k) (1)-1<=m. If G’(j) is not determined in the first scan and 1<=j<= f’ (k’) (1)-2, thus, in the second scan, we set G’(j)=m - max{gs 1 (j), gs 2 (j)}= m - gs 2 (j)= f’ (k’) (1) - 2. If no such k exists, set each undetermined value of G to m in the second scan. k=1=k’, since P f’(1)-1 =P 9 =“A”=P 1, we set G’(j)=f’ (1)-2 for j=1,2,3,4,5,6,8. Observe: ∵ P 1,4 =P 9,12, ∴ gs 2 (j)=m-(f’(1)-1)+1=4, where 1 ≦ j ≦ f’ (k’) (1)-2.

39 Let z be f’ (k’) (1)-2. Let k’’ be the largest value k such that f’’ (k) (z)- 1<=m. Then we set G’(j) = m - gs 2 (j) = m - (m - f’’ (i) (z) - 1) = f’’ (i) (z) - 1, where 1<=i<=k’’ and f’’ (i-1) (z) < j <= f’’ (i) (z)-1 and f’’ (0) (z) = z. For example, z=8 :  k=1, f’’ (1) (8)-1=11 ≦ m=12  k=2, f’’ (2) (8)-1=12 ≦ m=12 => k’’=2  i=1, f’’ (0) (8)-1 = 7 < j ≦ f’’ (1) (8)-1=11.  i=2, f’’ (1) (8)-1 =11< j ≦ f’’ (2) (8)-1=12.  We set G(9) and G(11)= f’’ (1) (8) – 1= 12-1 = 11. j P ATCACATCATCA f’ G’

40 We essentially have to decide the maximum number of steps. We can move the window right when a mismatch occurs. This is decided by the following function: max{G’(j), j-B(T s+j-1 )}

41 Shift Example We compare T and P from right to left. Since T 12 =“T”≠P 12 =“A”, the largest movement = max{G’(j), j-B(T s+j-1 )} = max{G’(12), 12-B(T 12 )}= max{1,12-10} = TGATCGATCACATATCACATCATCA PATCACATCATCA mismatch PATCACATCATCA Σ ACGT B j P ATCACATCATCA f’ G’

42 After moving, we compare T and P from right to left. Since T 14 =“T”≠P 12 =“A”, the largest movement = max{G’(j), j-B(Ts+j-1)} = max{G’(12), 12-B(T 14 )} = max{1,12-10} = TGATCGATCACATATCACATCATCA PATCACATCATCA mismatch PATCACATCATCA Shift j P ATCACATCATCA f’ G’ Σ ACGT B

43 After moving, we compare T and P from right to left. Since T 12 =“T”≠P 8 =“G”, the largest movement = max{G’(8), j-B(T 12 )} = max{8,8-10} = TGATCGATCACATATCACATCATCA PATCACATCATCA mismatch PATCACATCATCA Shift j P ATCACATCATCA f’ G’ Σ ACGT B

44 Time Complexity The preprocessing phase in O(m+Σ) time and space complexity and searching phase in O(mn) time complexity. The worst case time complexity for the Boyer-Moore method would be O((n-m+1)m). It was proved that this algorithm has O(m) comparisons when P is not in T. However, this algorithm has O(mn) comparisons when P is in T.

45 Reference Algorithms for finding patterns in strings, AHO, A.V., Handbook of Theoretical Computer Science,Volume A,Chapter 5 Elsevier, Amsterdam, 1990, pp Computer algorithms: string pattern matching strategies, Jun-ichi, A., IEEE Computer Society Press, Computer Algorithms: Introduction to Design and Analysis, BAASE, S. and VAN GELDER, A., Addison-Wesley Publishing Company, Chapter 11, Indexing and Searching, BAEZA-YATES, R., NAVARRO, G. and RIBEIRO- NETO, B., Modern Information Retrieval, Chapter 8, 1999, pp Éléments d'algorithmique, BEAUQUIER, D., BERSTEL, J. and CHRÉTIENNE, P., Masson Paris, Chapter 10, 1992, pp A fast string searching algorithm, BOYER R.S. and MOORE J.S., Communications of the ACM, Vol 20, 1977, pp Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm, COLE, R., SIAM Journal on Computing, Vol 23, 1994, pp Introduction to Algorithms, CORMEN, T.H., LEISERSON, C.E. and RIVEST, R.L., The MIT Press, Chapter 34, 1990, pp Off-line serial exact string searching, CROCHEMORE, M., Pattern Matching Algorithms, Chapter 1, 1997, pp 1-53 Pattern Matching in Strings, CROCHEMORE, M. and HANCART, C., Algorithms and Theory of Computation Handbook, Chapter 11, 1999, pp

46 Pattern matching and text compression algorithms, CROCHEMORE, M. and LECROQ, T., CRC Computer Science and Engineering Handbook, Chapter 8, 1996, pp Text Algorithms, CROCHEMORE, M. and RYTTER, W., Oxford University Press, Handbook of Algorithms and Data Structures in Pascal and C, GONNET, G.H. and BAEZA-YATES, R.A., Addison-Wesley Publishing Company, Chapter 7, 1991, pp ,. Data Structures and Algorithms in JAVA, GOODRICH, M.T. and TAMASSIA, R., John Wiley & Sons, Chapter 11, 1998, pp Algorithms on strings, trees, GUSFIELD, D., Cambridge University Press, Analyse exacte et en moyenne d'algorithmes de recherche d'un motif dans un texte, HANCART, C., University Paris 7, France, Fast pattern matching in strings, KNUTH, D.E., MORRIS, J.H. and PRATT, V.R., SIAM Journal on Computing, 1977, pp LECROQ, T., 1992, Recherches de mot,. Thesis, University of Orléans, France. Experimental results on string matching algorithms, LECROQ, T., Software - Practice & Experience, Vol 25, 1995, pp Algorithms, SEDGEWICK, R., Addison-Wesley Publishing Company, Chapter 19, 1988, pp Algorithms in C, SEDGEWICK, R., Addison-Wesley Publishing Company, Chapter 19, String Searching Algorithms, STEPHEN, G.A., World Scientific, Taxonomies and Toolkits of Regular Language Algorithms, WATSON, B.W., Eindhoven University of Technology, Algorithms & Data Structures, WIRTH, N., Prentice-Hall, Chapter 1, 1986, pp

47 THANK YOU