HCl, Morse pot fit to calc. F state (CCSD & CCSD(T); AB calc, 4.9.07): Agust,heima,.../REMPI/HCl/HCl,agust07-/HCl-Morse fit-F-070907ak.pxp & Agust,www,.../rempi/hcl/HCl,agust07-/HCl-Morse.

Slides:



Advertisements
Similar presentations
Molecular Bonding Molecular Schrödinger equation
Advertisements

OSU MI07 Coy,Wong,Kay,Field1 New effective one-electron potential for CaF based on ab-initio calculations CaF is a prototype for all Rydberg.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
Transformer. Spiral Inductor Calculator A transformer.
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez.
EEB, DII, S6, ) Atom spectroscopy: energy levels (see lab experiment no 3 & lecture ) When analysing data it is often necessary to fit a.
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
HCl, d 3  1 PC(AK)/C:,.....HCl-Triplet states ak.ppt Agust,heima,...HCl-Potentials ak.pxp Agust, heima,...HCl-Triplet states.xls PC(AK)/C:,.....Experiment ej.pxp.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
Pnt sqrt(Mw) Mw H Br Br CH379Br CH381Br+ pnt Sqrt(Mw) Coefficient values ± one standard.
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
HCl, , Morse pot. Fit to calc. F state (AB´s calc: AQZ HCl xls) Agust, www,...rempi/hcl/HCl,agust07-/HCl-Morse fit-F aak.ppt Agust,
HCl, X pot., rv and Bv evaluations PC-labt.C,....rannsoknir/HCl-Potentials aka.pxp PC-labt.C,....rannsoknir/HCl-Potentials aka.ppt PC-labt.C,....rannsoknir/HCl-Potentials aka.xls.
HCl, ; exp vs calc potentials: Agust,www,..../rempi/hcl/HCl,agust07-/HCl-exp vs calc pot akab.ppt Agust,heima,.../REMPI/HCl/HCl,agust07-/HCl-Potentials avhwak.pxp.
HCl, f 2 triplet state: Morse pot Agust,heima,...HCl-Triplet states.xls Agust,heima,...HCl-Triplet states.pxp Agust,www,...HCl-Triplet states.ppt.
HCl, potentials: Agust,heima,...REMPI/HCl/HCl,agust07-/HClpotXF ej ak.xls Agust,heima,...REMPI/HCl/HCl,agust07-/HClpotXF ej ak.pxp.
HCl Calc. Vs exp (f3D2) state(Morse Pot): AK(PC-Labt)/C....Experiment ej.pxp AK(PC-Labt)/C....Experiment ejak.ppt Data from pxp file from EJ:
Lecture 1 Quantization of energy. Quantization of energy Energies are discrete (“quantized”) and not continuous. This quantization principle cannot be.
 All objects have a NATURAL FREQUENCY at which they tend to vibrate. This frequency depends on the material the object is made of, the shape, and many.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Quantum coherent control of the lifetime of excited resonance states with laser pulses A. García-Vela Instituto de Física Fundamental, Consejo Superior.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
HCl, X pot.: rv and Bv evaluations: Agust,www,...HClnov07-/HCl-Potentials aka.ppt PC-labt.C..../rannsoknir/wavef-X-CCSD-AQZ ak.xls PC-labt.C..../rannsoknir/wavef-X-CCSD-AQZ ak.pxp.
1 TTU report “Dijet Resonances” Kazim Gumus and Nural Akchurin Texas Tech University Selda Esen and Robert M. Harris Fermilab Jan. 26, 2006.
A Practical Procedure for ab initio Determination of Vibrational Spectroscopic Constants, Resonances, and Polyads William F. Polik Hope College, Holland,
divergent 2.absolutely convergent 3.conditionally convergent.
HI H(1) vs V(m+6) & O(0) vs. V(m+7):
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
“Van der Waals” Wells are Important in Chemical Reactions University of Florida, QTP Nov. 6, 2002 Acknowledgments : Dunyou Wang (now at NASA/Ames), Tiao.
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
Example Suppose that we take a random sample of eight fuel efficient cars and record the gas mileage. Calculate the following for the results: 33, 41,
Warm Up. Equations of Tangent Lines September 10 th, 2015.
SCH-Br Summary of spectra vs T, (slides: 3-7 (“hot”); 10-11(“cold”)) calc. vs. exp. chemical shift differences for ax.-eq. (C2-C6, C3-C5, C4) (slides 11)
Vibronic Perturbations in the Electronic Spectrum of Magnesium Carbide Phalgun Lolur*, Richard Dawes*, Michael Heaven + *Department of Chemistry, Missouri.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Transition State Theory, Continued
A New Potential Energy Surface for N 2 O-He, and PIMC Simulations Probing Infrared Spectra and Superfluidity How precise need the PES and simulations be?
Member of the Helmholtz Association T. Zhang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Radial Correlation Analysis of.
IMPACT OF COMPLEX-VALUED ENERGY FUNCTION SINGULARITIES ON THE BEHAVIOUR OF RAYLEIGH-SCHRODINGER PERTURBATION SERIES. H 2 CO MOLECULE VIBRATIONAL ENERGY.
F 3  2
The temperature of a lava flow can be estimated by observing its color
Molecular Bonding Molecular Schrödinger equation
63rd OSU International Symposium on Molecular Spectroscopy FC01
CH3I VMI-REMPI data and analysis:
12.3 Analyzing Data 12.4 Standard Deviation.
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
The Three-dimensional Potential Energy
Full dimensional rovibrational variational calculations of the S1 state of C2H2 -or- “less is more less” P. Bryan Changala JILA, National Institute.
Unit 7. Day 13..
SCH-Cl Summary of spectra vs T, (slides: 3-7 (“hot”); (“cold”))
Coordinate /re.
Area of a Composite Calculate the area of this shape Total Area =
Accurate analytic potentials for BeH, BeD & BeT
corresponding n = 3 Fi state positions are as (see red):
SCH-Cl Summary of spectra vs T, (slides: 3-7 (“hot”); (“cold”))
When displaced from equilibrium this system is a basic model for the simple harmonic oscillator (SHO) - neglecting anharmonicity of course. 1.
Young Children Do Not Integrate Visual and Haptic Form Information
CH3I summary This file includes some ideas about dissociation of
SCH-I Summary of spectra vs T, (slides: 3-7 (“hot”); 9-10(“cold”))
Compound Area Compound area is where a shape can be made up of other shapes. The area of a compound shape can be found by calculating the area of the shapes.
Statistics: Analyzing Data and Probability Day 5
Spectroscopy, Structure, and Ionization Energy of BeOBe
Name:________________ Date:_________________ Class Period:___________
Coupled channel analysis of the D 1P~ d 3P complex in NaK : potential energy curves and spin-orbit functions Anastasia Drozdova1,2 Amanda Ross1, Andrey.
Sara E. Ray and Anne B. McCoy
Last hour: Particles at step functions
Presentation transcript:

HCl, Morse pot fit to calc. F state (CCSD & CCSD(T); AB calc, ): Agust,heima,.../REMPI/HCl/HCl,agust07-/HCl-Morse fit-F ak.pxp & Agust,www,.../rempi/hcl/HCl,agust07-/HCl-Morse fit-F ak.ppt Fitting was performed in IGOR according to procedure:

r U calc (CCSD) 1) 1) AB´s calc, ; F 1  state Red dots: Calc. FuncFit Fit W_coef wave26 /X=wave29 /D Fit converged properly fit_wave26= Fit(W_coef,x) W_coef={84242,37086,1.7202,1.3158} V_chisq= ; V_npnts= 41; V_numNaNs= 0; V_numINFs= 0; W_sigma={38.3,274,0.0112, } Coefficient values ± one standard deviation C1 = ± 38.3 C2 = ± 274 C3 = ± C4 = ± Red curve: Morse fit

U Morse (F;CCSD) = (1-exp( (r )))**2 i.e: Fit: T0 = ± 38.3 cm-1 De = ± 274 cm-1  = ± A-1 re= ± A From exp 1) : T0= cm-1 De= cm-1  = A-1 re= A 1) see: agust,heima,.../HCl-pot xls

=> we and wexe can be derived from  = we SQRT(  HCl /De) & De = (we)**2/(4*wexe) i.e. we =  /( *SQRT(  HCl /De)) we =1.7202/( *Sqrt(0, /37086)) we = cm-1 wexe=(we**2)/(4*De) wexe=( **2/(4*37086) wexe= cm-1 i.e: Fit: we = cm-1 wexe = cm-1 Exp. 1) : ) see: agust,heima,.../HCl-pot xls

Range: A: FuncFit Fit W_coef wave2 /X=wave1 /D Fit converged properly fit_wave2= Fit(W_coef,x) W_coef={84303,32945,1.8274,1.3099} V_chisq= 10850; V_npnts= 24; V_numNaNs= 0; V_numINFs= 0; W_sigma={6.77,285, ,0.0003} Coefficient values ± one standard deviation C1 = ± 6.77 C2 = ± 285 C3 = ± C4 = ±

2) Fit, range: 1-2.3Fit range Exp. 1) T ± ± De37086 ± ±  ± ± re ± ± we wexe Summary: 1) see: agust,heima,.../HCl-pot xls 2) U M (r) = T0 + De (1-exp(-b(r-re)))**2 HCl, Morse pot. fit to calc. F state (CCSD; AB calc, ): & comparison with experimental data:

2) Fit, range: 1-2.5Fit, range: Exp. 1) T ± ± De37504 ± ±  ± ± re ± ± we wexe Summary: HCl, Morse pot. fit to calc. F state (CCSD(T); AB calc, ): & comparison with experimental data: 1) see: agust,heima,.../HCl-pot xls 2) U M (r) = T0 + De (1-exp(-b(r-re)))**2

Conclusion: CCSD and CCSD(T) calculations predict the shape and vibrational quantum levels of the F 1  state resonably well, wherease absolute energy prediction is not equally good.