Magnetic Reconnection Rate and RHESSI Hard X-Ray Imaging Spectroscopy of Well Resolved X-class Flares Yan Xu, Ju Jing, Wenda Cao, and Haimin Wang.

Slides:



Advertisements
Similar presentations
Summary of 2008 Science Team Meeting. Collaboration With Dr. Wiegelmann 1. NLFFF extrapolation, leading person: Ju Jing. Objective: adapt codes to BBSO.
Advertisements

RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
NBYM 2006 A major proton event of 2005 January 20: propagating supershock or superflare? V. Grechnev 1, V. Kurt 2, A. Uralov 1, H.Nakajima 3, A. Altyntsev.
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Wei Liu 1, Vahé Petrosian 2, Brian Dennis 1, & Gordon Holman 1 1 NASA Goddard Space Flight Center 2 Stanford University Conjugate Hard X-ray Footpoints.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Observations on Current Sheet and Magnetic Reconnection in Solar Flares Haimin Wang and Jiong Qiu BBSO/NJIT.
Solar flares and accelerated particles
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Hard X-Ray Footpoint Motion in Spectrally Distinct Solar Flares Casey Donoven Mentor Angela Des Jardins 2011 Solar REU.
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
Imaging with subcollimator 1. Dec 6, 2006 white light flare Hinode/SOT image during the main HXR peak! SOT resolution.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
RHESSI Observations of the 29-Oct-2003 Flare. 29-Oct-2003 General Info 29-OCT-03 GOES Start: 20:37, Peak: 20:49, End 21:01 Size X10 Position S19W09 (AR486)
Hard X-ray footpoint statistics: spectral indices, fluxes, and positions Pascal Saint-Hilaire 1, Marina Battaglia 2, Jana Kasparova 3, Astrid Veronig 4,
Modeling the Neupert Effect in Flares: Connecting Theory and Observation Andrea Egan Advisors: Dr. Trae Winter and Dr. Kathy Reeves.
RHESSI OBSERVATIONS OF FLARE FOOTPOINTS AND RIBBONS H. Hudson and M. Fivian (SSL/UCB)
Rapid Changes in the Longitudinal Magnetic Field Associated with the July gamma -ray Flare Vasyl Yurchyshyn, Haimin Wang, Valentyna Abramenko,
Nonlinear Force Free Field Models for AR J.McTiernan, H.Hudson (SSL/UCB) T.Metcalf (LMSAL)
The hard X-ray spectral structure of flare ribbons H. Hudson, L. Fletcher, S. Krucker, J. Pollock.
Xu et al., ApJ 607, L131, 2004: or, how do flare footpoints work? First flare observations in the infrared 1.56  nominally is as deep as deep can be (the.
Palermo October 10, Flare observations in the recent solar maximum H.S. Hudson Space Sciences Lab, UC Berkeley.
GLOBAL ENERGETICS OF FLARES Gordon Emslie (for a large group of people)
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
NLFFF Extrapolation for AR J.McTiernan. *Chromospheric* Vector Magnetogram of AR (from Tom Metcalf) 18:46 UT Image is of Line of sight B (B.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
RHESSI and global models of flares and CMEs: What is the status of the implosion conjecture? H.S. Hudson Space Sciences Lab, UC Berkeley.
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Energy-height relation for hard X-ray footpoint sources observed by RHESSI. TOMASZ MROZEK ASTRONOMICAL INSTITUTE, WROCŁAW UNIVERSITY.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
1 The Astrophysical Journal, 601:L195–L198, 2004 February RAPID PENUMBRAL DECAY FOLLOWING THREE X-CLASS SOLAR FLARES H. Wang, 1,2 C. Liu, 1 J.
Measurement of the Reconnection Rate in Solar Flares H. Isobe 2004/12/6 Taiyo-Zasshikai.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
ALFVEN WAVE ENERGY TRANSPORT IN SOLAR FLARES Lyndsay Fletcher University of Glasgow, UK. RAS Discussion Meeting, 8 Jan
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
SH 51A-02 Evolution of the coronal magnetic structures traced by X-ray and radio emitting electrons during the large flare of 3 November 2003 N.Vilmer,
1 太陽雑誌会速報 T.T.Ishii The Astrophysical Journal, 607:L131–L134, 2004 June 1 NEAR-INFRARED OBSERVATIONS AT 1.56 MICRONS OF THE 2003 OCTOBER 29.
H α and hard X-ray observations of solar white-light flares M. D. Ding Department of Astronomy, Nanjing University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.
Today’s Papers 1. Flare-Related Magnetic Anomaly with a Sign Reversal Jiong Qiu and Dale E. Gary, 2003, ApJ, 599, Impulsive and Gradual Nonthermal.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
I. Evidence of Rapid Flux Emergence Associated with the M8.7 Flare on 2002 July 26 Wang H. et al. 2004, ApJ, 605, using high temporal resolution.
STUDY OF A DENSE, CORONAL THICK TARGET SOURCE WITH THE MICROWAVE DATA AND 3D MODELING Gregory Fleishman, Yan Xu, Gelu Nita, & Dale Gary 03/12/2015.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Scientific Interests in OVSA Expanded Array Haimin Wang.
Flare footpoints in optical and UV Lyndsay Fletcher University of Glasgow RHESSI 10, August 4 th 2010, Annapolis TRACE WL ~2s time cadence, 0.5” pixel.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Physics of Solar Flares
Marina Battaglia, FHNW Säm Krucker, FHNW/UC Berkeley
Two Years of NoRH and RHESSI Observations: What Have We Learned
RHESSI and H study of the X4 Flare of 3 Nov 2003
Evolution of Ha Flare Kernels and Energy Release
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Periodic Acceleration of Electrons in Solar Flares
Presentation transcript:

Magnetic Reconnection Rate and RHESSI Hard X-Ray Imaging Spectroscopy of Well Resolved X-class Flares Yan Xu, Ju Jing, Wenda Cao, and Haimin Wang

2003 Oct. 29 X10 Red: NIR flare ribbons Blue: RHESSI HXR contours correspond to the 50 – 100 keV

Ding et al. 2003

According to Brown et al Therefore, electrons with energy greater than 200 could reach cm -2 Loop length ~ 10 9 cm, number density in corona ~ cm -3 ==> N corona ~ cm -2

Brown et al More complicate treatment: N ~ , b…

We need more events…

DateContrast Enhancement (G-band) Peak HXR Flux (25 ~ 50 keV) Peak HXR Flux (50 ~ 100 keV) Position (Cosθ) 2003-Oct-29118% Nov-02230%* Dec-06336% Dec-13104% Dec % G-band Observations

Footpoint Asymmetric e e α

e e α α   ? RHESSI Visibility + Forward-fit

Footpoint Asymmetric B   ?

Magnetic/Mirror Effect?  =  =  =

Magnetic/Mirror Effect?  =  =  =

Magnetic/Mirror Effect?

B (Gauss) Power Index

Shear Angle 20:40:5420:41:3220:41:4620:41:52 20:41:5820:42:0220:42:0820:42:18

Shear Angle 20:40:5420:41:3220:41:4620:41:52 20:41:5820:42:0220:42:0820:42:18

Shear Angle 20:41:3220:42:02

Shear Angle 20:41:3220:42:02 Change Rate vs. ???

G-band ~ E field ~ Power-index

Electric Field (V/cm) Contrast

G-band ~ E field ~ Power-index Electric Field (V/cm) Contrast

RHESSI Observations: Total Number of particles inside the acceleration region Rate of acceleration of electrons (from spatially-integrated HXR intensity) Specific Acceleration Rate Electron Acceleration Rate

Super-Dreicer Electric Field Acceleration (Somov 1991) B // BB E RHESSI observations ~ Vector Magnetograms