Mechanics of Materials II UET, Taxila Lecture No. (3)

Slides:



Advertisements
Similar presentations
LECTURER5 Fracture Brittle Fracture Ductile Fracture Fatigue Fracture
Advertisements

ME 240: Introduction to Engineering Materials Chapter 8. Failure 8.1 CHAPTER 8.
STATICALLY DETERMINATE STRESS SYSTEMS
Material testing Lesson 2.
Solid Materials.
Chapter 11 Mechanical Properties of Materials
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
LECTURER 2 Engineering and True Stress-Strain Diagrams
Normal Strain and Stress
Course Title: Strength of Materials (CVE 202)
Engineering materials lecture #14
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
SAFE 605: Application of Safety Engineering Principles Strength of Materials.
EXPERIMENT # 3 Instructor: M.Yaqub
Mechanics of Materials II
Tensile Test The most common static test is the uniaxial tensile test, which provides information about a variety of properties. As a load is applied to.
Mechanics of Materials II
ENGR 225 Section
LECTURER 3 Fundamental Mechanical Properties (i)Tensile strength
NAZARIN B. NORDIN What you will learn: Strength, elasticity, ductility, malleability, brittleness, toughness, hardness Ferrous/ non-ferrous.
4.5 FORCE METHOD OF ANALYSIS FOR AXIALLY LOADED MEMBERS
Mechanics of Materials(ME-294)
Lab 6B -Fracture Toughness and Fracture Toughness-limited Design Big bang for the buck!
Thermal Strains and Element of the Theory of Plasticity
COLUMNS. COLUMNS Introduction According to ACI Code 2.1, a structural element with a ratio of height-to least lateral dimension exceeding three used.
Elasticity and Strength of Materials
Lecture # 6 Failure Intended learning Outcomes: 1.Describe the mechanism of crack propagation for both ductile and brittle modes of fracture. 2. Explain.
Objectives Students will be able to label a stress-strain diagram correctly indicating. Ultimate stress, yield stress and proportional limit. Students.
Mechanical Properties
Poisson’s Ratio For a slender bar subjected to axial loading:
Unit V Lecturer11 LECTURE-I  Introduction  Some important definitions  Stress-strain relation for different engineering materials.
STRUCTURES Outcome 3 Gary Plimer 2008 MUSSELBURGH GRAMMAR SCHOOL.
Mechanical Properties of Materials
Chapter 4 Axial Load. Saint -Venant's Principle Saint-Venant's Principle claims that localized effects caused by any load acting on a body will dissipate.
Fracture Overview Fall Figure 6.1 Rectangular plate with hole subjected to axial load. (a) Plate with cross-sectional plane;
CTC / MTC 322 Strength of Materials
Manufacturing Processes
Welding Design 1998/MJ1/MatJoin2/1 Design. Lesson Objectives When you finish this lesson you will understand: Mechanical and Physical Properties (structure.
Mechanical Behavior, Testing and Manufacturing Properties of Materials
Week 4 Fracture, Toughness, Fatigue, and Creep
Chapter 9-Statics, Dynamics and Mechanical Engineering Objectives and what should you Know: What are statics and Dynamics? What are the Newtons’s three.
Mechanics of Materials II UET, Taxila Lecture No. (4&5)
Jiangyu Li, University of Washington Yielding and Failure Criteria Plasticity Fracture Fatigue Jiangyu Li University of Washington Mechanics of Materials.
Chapter 2 Properties of Metals.
Mechanical Properties of Materials
1.To understand the keywords associated with the deformation of different types of solids 2.To be able to calculate stress, strain and hence Young’s modulus.
EGM 5653 Advanced Mechanics of Materials
Week 4 Fracture, Toughness, Fatigue, and Creep
STRUCTURES Young’s Modulus. Tests There are 4 tests that you can do to a material There are 4 tests that you can do to a material 1 tensile This is where.
SIMPLE STRESS & STRAIN ► EN NO GUIDED BY EN NO PROF. V.R.SHARMA GEC PALANPUR APPLIED MECHANICS DEPARTMENT.
Chapter 12 Lecture 22: Static Equilibrium and Elasticity: II.
Materials Science Chapter 8 Deformation and Fracture.
PROPERTIES OF MATERIALS ENF 150 Chapter 10: Properties of Materials.
Mechanics of Solids (M2H321546)
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
GOVERMENT ENGINEERING COLLEGE BHUJ (CIVIL ENGINEERING)
CHAPTER OBJECTIVES Show relationship of stress and strain using experimental methods to determine stress-strain diagram of a specific material Discuss.
Direct and Bending Stresses
Introduction We select materials for many components and applications by matching the properties of the material to the service condition required of the.
Behaviour of Reinforced Concrete Beams Under Bending
Mechanics of Materials Dr. Konstantinos A. Sierros
Dr. Omar S.M.J.Ali PhD Orthodontic
MECHANICAL PROPERTIES OF MATERIALS
Chapter 3 Mechanical Properties of Materials
Determination of Fracture Toughness
Material Testing.
Mechanical Properties: 2
Mechanical Properties: 1
Simple Stresses & Strain
Mechanical Property 기계적 성질
Presentation transcript:

Mechanics of Materials II UET, Taxila Lecture No. (3)

Typical stress-strain curves resulting from tensile tests on some metals are shown in next Figures

Tensile test curves for various metals

Typical stress-strain curves for hard drawn wire, note the reduction in strain values

Typical tension test results for various types of nylon and polycarbonate.

Brass tension test

Aluminium alloy tensile test

Brittle polymer tensile test

Eye Glass tensile test

When σ u & σ y is not valid? In some loading cases, e.g. buckling of struts, neither the yield stress nor the ultimate strength is a realistic criterion for failure of components.

Load factor In such cases it is convenient to replace the safety factor, based on stresses, with a different factor based on loads.

Definition of load factor The load factor is therefore defined as: load at failure /allowable working load

This is particularly useful in applications of the so-called plastic limit design procedures.

Temperature stresses When the temperature of a component is increased or decreased the material Respectively expands or contracts.

If this expansion or contraction is not resisted in any way then the processes take place free of stress.

If, however, the changes In dimensions are restricted then stresses termed as Temperature stresses will be set up within the material.

Consider a bar of material with a linear coefficient of expansion ‘ ‘. Let the original length of the bar ‘L’ and let the temperature increase be t.

If the bar is free to expand the change in length would be given by  L = L  t Then the new length L’ will be: L’ = (L +  L ) = L+ L  t = L (1 +  t)

Compressive thermal stresses If this extension were totally prevented, then a compressive stress would be set up equal to that produced when a bar of length: L ( 1 +  t) is compressed through a distance of L  t.

In this case the bar experiences a compressive thermal strain equal to:

In most cases ‘ t’ is very small compared with unity so that:

But E = σ/ Thus σ = E  =   t

This is the stress set up owing to total restraint on expansions or contractions caused by a temperature rise, or fall, t.

In the former case the stress is compressive, in the latter case the stress is tensile.

Partial Prevention If the expansion or contraction of the bar is partially prevented then the stress set up will be less than that given by the equation above.

Its value will be found in a similar way to that described above except that instead of being compressed through the total free expansion distance of L  t it will be compressed through some proportion of this distance.

The new mode will be depending on the amount of restraint.

Assuming some fraction n of (L  t) is allowed, then the extension which is prevented is: (1 - n) L  t.

This will produce a compressive strain, as described previously, of magnitude:

Or approximately

The stress set up will then be: E times  σ = (1-n) E  t

Thus, for example, if one- third of the free expansion is prevented the stress set up will be two-thirds of that given by the equation: σ=   t

Stress concentrations & stress concentration factor If a bar of uniform cross- section is subjected to an axial tensile or compressive load the stress is assumed to be uniform across the section.

However, in the presence of any sudden change of section, hole, sharp corner, notch, keyway, material flaw, etc., the local stress will rise significantly.

The ratio of this stress to the nominal stress at the section in the absence of any of these so-called stress concentrations is termed as the stress concentration factor.

stress concentration factor SCF = Local stress/nominal stress

Toughness Toughness is defined as: the ability of a material to withstand cracks, In other words to prevent the transfer or propagation of cracks across its section hence causing failure.

Types of toughness of materials Two distinct types of toughness mechanism exist and in each case it is appropriate to consider the crack as a very high local stress concentration.

First Toughness Type The first type of mechanism relates particularly to ductile materials which are generally regarded as tough.

This arises because the very high stresses at the end of the crack produce local yielding of the material and local plastic flow at the crack tip.

This has the action of blunting the sharp tip of the crack and hence reduces its stress concentration effect considerably (Fig. 1.15).

High stress concentration factor at crack tip (notch tip)

Area of local yielding of material reducing the stress- concentration effect

Second toughness mechanism The second mechanism refers to fibrous, reinforced or resin-based materials which have weak interfaces.

Examples for second mode of toughness Typical examples are glass-fibre reinforced materials and wood.

In the second mechanism of toughness It can be shown that a region of local tensile stress always exists at the front of a propagating crack.

Also and provided that the adhesive strength of the fibre/resin interface is relatively low (one-fifth the cohesive strength of the complete material)

Tensile stress mechanism This tensile stress opens up the interface and produces a crack sink, i.e. it blunts the crack by effectively increasing the radius at the crack tip, thereby reducing the stress-concentration effect as appears in next fig.

This principle is used stop, or at least delay, crack propagation in engineering components when a temporary "repair" is carried out by drilling a hole at the end of a crack, again reducing its stress- concentration effect.

Toughness mechanism-type 2.

Creep and Fatigue In the preceding paragraphs it has been suggested that failure of materials occurs when the ultimate strengths have been exceeded.

Plastic Deformation excessive deformation, as caused by plastic deformation beyond the yield point, can be considered as a criterion for effective failure of components.

This chapter would not be complete, therefore, without reference to certain loading conditions under which materials can fail at stresses much less than the yield stress, namely creep and fatigue.

Definition of creep Creep is the gradual increase of plastic strain in a material with time at constant load.