Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.

Slides:



Advertisements
Similar presentations
Mitglied der Helmholtz-Gemeinschaft Giorgi Khazaradze Tbilisi, July10, 2014 Study of hexaferrite Ba 0.6 Sr 1.4 Zn 2 Fe 12 O 22 by EPR technique.
Advertisements

Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon E. Sorte, W. Baker, D.R. McCamey, G. Laicher, C. Boehme, B. Saam Department of Physics, University.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Electron nuclear double resonance (ENDOR)
Long-lived spin coherence in silicon with electrical readout
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Stephen Hill, Saiti Datta and Sanhita Ghosh, NHMFL and Florida State University In collaboration with: Enrique del Barco, U. Central Florida; Fernando.
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
“fast” camera“slow” camera In both examples, there is still something to “see” This is not the case for most types of spectroscopy.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
2002 London NIRT: Fe 8 EPR linewidth data M S dependence of Gaussian widths is due to D-strainM S dependence of Gaussian widths is due to D-strain Energies.
Nuclear spin irreversible dynamics in crystals of magnetic molecules Alexander Burin Department of Chemistry, Tulane University.
Resonance condition. Pulse A coil of wire placed around the X axis will provide a magnetic field along the X axis when a direct current is passed through.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Optically Pumping Nuclear Magnetic Spin M.R.Ross, D.Morris, P.H. Bucksbaum, T. Chupp Physics Department, University of Michigan J. Taylor, N. Gershenfeld.
Introduction to Single Molecular Magnet
Tony Hyun Kim (Partner: Connor McEntee) 11/17/ MW2-5 Prof. Roland.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
Determination of Spin-Lattice Relaxation Time using 13C NMR
A two-qubit conditional quantum gate with single spins F.Jelezko, J. Wrachtrup I. Popa, T. Gaebel, M. Domhan, C. Wittmann Univ. of Stuttgart.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Internal Degrees of Freedom and Quantum Tunneling of the Magnetization in Single-Molecule Magnets E NRIQUE DEL B ARCO Department of Physics – UCF Orlando.
Dynamical decoupling in solids
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Quantum Spin Glasses & Spin Liquids.  QUANTUM RELAXATION Ising Magnet in a Transverse Magnetic Field (1) Aging in the Spin Glass (2) Erasing Memories.
NMR spectroscopy in solids: A comparison to NMR spectroscopy in liquids Mojca Rangus Mentor: Prof. Dr. Janez Seliger Comentor: Dr. Gregor Mali.
Single-ion and exchange anisotropy effects in small single-molecule magnets* Richard A. Klemm University of Central Florida, Orlando, FL USA and Dmitri.
F. Branzoli ¶, P. Carretta ¶, M. Filibian ¶, S. Klytaksaya ‡ and M. Ruben ‡ ¶ Department of Physics "A.Volta", University of Pavia-CNISM, Via Bassi 6,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Stephen Hill NHMFL and Florida State University, Physics Outline of talk: Idea behind the title of this talk Nice recent example: Radical Ferromagnet Mononuclear.
Dynamics of Polarized Quantum Turbulence in Rotating Superfluid 4 He Paul Walmsley and Andrei Golov.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Spin dynamics in Ho 2-x Y x Sn 2 O 7 : from the spin ice to the single ion magnet G. Prando 1, P. Carretta 1, S.R. Giblin 2, J. Lago 1, S. Pin 3, P. Ghigna.
NQR mine detector Anton Gradišek Supervising officer: doc. dr. Tomaž Apih Jožef Stefan Institute, F-5.
Introduction to Neutron Scattering Jason T. Haraldsen Advanced Solid State II 2/27/2007.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira.
Microscopic origin of the adiabatic change of the magnetization Hans De Raedt Applied Physics-Computational Physics, Materials Science Centre, University.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Single Molecular Magnets
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
DNP for polarizing liquid 3 He DNP for polarizing liquid 3 He Hideaki Uematsu Department of Physics Yamagata University.
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
1 Department of Physics , University at Buffalo, SUNY APS March Meeting 2015 Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov.
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Nuclear magnetic resonance study of organic metals Russell W. Giannetta, University of Illinois at Urbana-Champaign, DMR Our lab uses nuclear magnetic.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Quenching Spin Decoherence in Diamond through Spin Bath Polarization Gregory S. Boebinger, National High Magnetic Field Laboratory DMR High-Field.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
The University of Tokyo Seiji Miyashita
Andrew Gomella1,2, S. Yoshii,2 T. Zenmoto,2 M. Yasui,2 M. Hayashi,2 G
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Condensed Matter in EMR:
S. Hill, N. Anderson, A. Wilson, S. Takahashi, and J. Lawrence
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
NV centers in diamond: from quantum coherence to nanoscale MRI
Hole Spin Decoherence in Quantum Dots
Hiroyuki Nojiri, Department of Physics, Okayama University
by I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K
at the University of Alabama
Presentation transcript:

Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S. Takahashi et al., submitted to Phys. Rev. Lett., arXiv: (2008)

2 Spin decoherence of SMMs There are many discussions about spin decoherence, but no published experimental data of spin echo from single-crystal SMMs. Limited # of high-frequency pulsed EPR systems. T 2 will be very short. There are some observations of spin echo from highly diluted molecular magnets. C. Schlegel et al., Phys. Rev. Lett. 101, (2008). A. Ardavan et al., Phys. Rev. Lett. 98, (2007). Fluctuations of SMM spin bath is probably one of major decoherence sources. There are two ways to reduce the spin bath fluctuations 1.Dilute the spin bath 2.Polarize the spin bath

3 Suppression of spin decoherence Fluctuations of SMM spin bath are caused by spin flip-flop process. High-frequency and low temperature can polarize the spin bath Significantly reduces spin decoherence 240 GHz Zeeman energy N

4 N-V N Decoherence of NV center 1.N electron spin flip-flops –J. A. van Wyk et al., J. Phys. D: Appl. Phys. 30, 1790 (1997). –T. A. Kennedy et al., Appl. Phys. Lett. 83, 4190 (2003) –R. Hanson et al., Phys. Rev. B 74, R (2006)) N-V $1 $1M $1k

5 N-V N Decoherence of NV center 1.N electron spin flip-flops –J. A. van Wyk et al., J. Phys. D: Appl. Phys. 30, 1790 (1997). –T. A. Kennedy et al., Appl. Phys. Lett. 83, 4190 (2003) –R. Hanson et al., Phys. Rev. B 74, R (2006)) C nuclear spin flip-flops –L. Childress et al., Science (2008) –T. Gaebel et al., Nature Phys. 2, 408 (2008) N-V $1 $1M $1k 13 C N-V

6 Temperature dependence of T 2 Hahn echo sequence (  echo). Single exponential fit N-V: –T>11.5 K : 6.7  s → 8.3  s –T < 2 K : ~250  s N: –T>11.5 K : 5.5  s → 5.8  s –T = 2.5 K : ~80  s N

7 Quenching spin bath decoherence No temperature dependence of T 2 at 9.4 GHz (E. C. Reynhardt et. al., J. Chem. Phys. 109, 8471 (1998)) N spin flip-flop process (C. Kutter et. al., PRL 74, 2925 (1995)) 90 % for 10 x T 2 99 % for quenching 1/  res = 250  s 90 % 250  s 99 %

8 13 C nuclear spin bath fluctuations 1/  res = 250  s: Temperature independent relaxation rate Decoherence time caused by 13 C nuclear spin flip-flop process where  nn is NMR linewidth, N is the number of nuclear per volume. T 2 ~ 380  s for 13 C nuclear spin bath fluctuations S. Takahashi et al., Phys. Rev. Lett. 101, (2008) (I. M. Brown, Time domain electron spin resonance, p195, Wiley (1979). A. Schweiger and G. Jeschke, Oxford university press (2001)).  res = 250  s

9 Fe 3 + S=5/ 2 Fe 8 single-molecule magnets S=10 spin system Ground state transition (E -10  E -9 ) ~ 110 GHz, smaller than Mn 12 -ac. {[Fe 8 (O) 2 (OH) 12 (C 6 H 15 N 3 ) 6 ]Br 7 (H 2 O)}Br·8H 2 O 110 GHz

10 cw EPR – angle dependence A single crystal was rotated as function of a magnetic field. Spin Hamiltonian g=2.00, D=-6.15 GHz, E=1.14 GHz. J. van Tol et al., Rev. Sci. Instrum. 76, (2004) 240GHz Quartz

11 cw EPR – temperature dependence B ~ easy axis Indicates the ground state peak at 4.6 T. m S =-10 ↔ m S =-9 High polarization

12 First spin echo measurement T 1 ~ 1 ms >> T 2 Strong temperature dependence indicates electron (Fe8 SMM) spin bath fluctuations T 1 measurement T 2 measurement

13 S=10 spin flip-flop process: Spin decoherence is significantly suppressed by spin polarization.  res is likely to coupling to nuclear moments and phonon (Proton (I=1/2) & 57 Fe(I=1/2)) S=10 Fe 8 spin bath fluctuations S. Takahashi et al., submitted to Phys. Rev. Lett., arXiv: (2008)

14 Summary We demonstrated that high frequency EPR can significantly suppress fluctuations of an electron spin bath to increase spin decoherence time T2. High-frequency EPR can reveal spin decoherence caused by nuclear spin bath fluctuations. We demonstrated quenching spin decoherence of NV center in diamond. S. Takahashi et. al., Phys. Rev. Lett (2008) We observed spin echo of single crystal S=10 Fe8 SMMs for the first time. S. Takahashi et al., submitted to Phys. Rev. Lett. arXiv: (2008)