1D Relativistic Plasma Equations (without laser) cold plasma Consider an electron plasma with density N(x,t), velocity u(x,t), and electric field E(x,t),

Slides:



Advertisements
Similar presentations
Laser Accelerators: The Technology of the Future (They Always Have Been and They Always Will Be ?) Cockcroft Institute Laser Lectures April 2008 Graeme.
Advertisements

Erdem Oz* USC E-164X,E167 Collaboration Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators
CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
L O A Journées accélérateurs, Roscoff, FRANCE, 9-12 (2005) Laser-plasma accelerators: Status and perspectives Victor Malka LOA, ENSTA – CNRS - École Polytechnique,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
High Intensity Laser Electron Scattering David D. Meyerhofer IEEE Journal of Quantum Electronics, Vol. 33, No. 11, November 1997.
Observation of the relativistic cross-phase modulation in a high intensity laser plasma interaction Shouyuan Chen, Matt Rever, Ping Zhang, Wolfgang Theobald,
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
Charged-particle acceleration in PW laser-plasma interaction
Acceleration of particles with lasers at RAL Peter A Norreys Physics Group Leader Central Laser Facility CCLRC Rutherford Appleton Laboratory visiting.
L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, Palaiseau cedex, France COULOMB05, Senagolia, Italy, September (2005) State of.
X-ray Generation in Plasma Using Laser-Accelerated Electrons Rahul Shah, F. Albert, R. Fitour, K. Taphuoc, and A. Rousse Laboratoire d’Optique Appliquée.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
Enhancement of electron injection using two auxiliary interfering-pulses in LWFA Yan Yin ( 银燕 ) Department of Physics National University of Defense Technology.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Full-scale particle simulations of high- energy density science experiments W.B.Mori, W.Lu, M.Tzoufras, B.Winjum, J.Fahlen,F.S.Tsung, C.Huang,J.Tonge M.Zhou,
1 Pukhov, Meyer-ter-Vehn, PRL 76, 3975 (1996) Laser pulse W/cm 2 plasma box (n e /n c =0.6) B ~ mc  p /e ~ 10 8 Gauss Relativistic electron beam.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
Laser driven particle acceleration
Eric Esarey W. Leemans, C. Geddes, C. Schroeder, S. Toth,
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Parameter sensitivity tests for the baseline variant Konstantin Lotov, Vladimir Minakov, Alexander Sosedkin Budker Institute of Nuclear Physics SB RAS,
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Winni Decking Impressions from the Dream Beams Symposium Max-Planck-Institut fuer Quantenoptik (MPQ)
Highlights of talk : 1.e+e- pair laser production 1.Collisionless shocks 1.Colliding laser pulses accelerator.
Electron acceleration in wake bubble by ultraintense laser interacting with plasma Bai-Song Xie and Hai-Cheng Wu College of Nuclear Science and Technology,
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Stable and Tuneable Laser Plasma Accelerators
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
R. Kupfer, B. Barmashenko and I. Bar
VARIOUS MECHANISMS OF ELECTRON HEATING AT THE IRRADIATION OF DENSE TARGETS BY A SUPER-INTENSE FEMTOSECOND LASER PULSE Krainov V.P. Moscow Institute of.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
While the rare half of the plasma bubble is accelerating for electrons, the front half of it is decelerating. For positive ions it is just the opposite.
Field enhancement coefficient  determination methods: dark current and Schottky enabled photo-emissions Wei Gai ANL CERN RF Breakdown Meeting May 6, 2010.
UCLA Positron Production Experiments at SABER Presented by Devon Johnson 3/15/06.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Laser acceleration of ion beams M.Chubaryan 1, A.V. Prozorkevich 2, S.A. Smolyansky 2 and I.A. Egorova 2 1 JINR, Dubna 2 Saratov State University.
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Summary WG5 R&D for Innovative Accelerators Greg LeBlanc.
Helical Accelerating Structure with Controllable Beam Emittance S.V. Kuzikov 1, A.A. Vikharev 1, J.L. Hirshfield 2,3 1 Institute of Applied Physics RAS,
Strategies for Future Laser Plasma Accelerators J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Rechatin, & V.Malka Laboratoire d’Optique Appliquée ENSTA-Ecole.
Laser wake field acceleration using nano-particles Laser wake field acceleration using nano-particles Department of Physics and Photon Science, Gwangju.
Ionization Injection E. Öz Max Planck Institute Für Physik.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
Friedrich-Schiller-University Jena
23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration.
Introduction to Plasma Physics and Plasma-based Acceleration Wakefield acceleration Various images provided by R. Bingham.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko.
M. Chen,1 M. Zeng,1 Z. M. Sheng,1,3 L. L. Yu,1 W. B. Mori,2 S. Li,1 N
The 2nd European Advanced Accelerator Concepts Workshop
SUPA, Department of Physics, University of Strathclyde,
8-10 June Institut Henri Poincaré, Paris, France
Stefano Romeo on behalf of SPARC_LAB collaboration
Tunable Electron Bunch Train Generation at Tsinghua University
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
شتاب الکترون در برهم­کنش با پالس لیزری نامتقارن
Presentation transcript:

1D Relativistic Plasma Equations (without laser) cold plasma Consider an electron plasma with density N(x,t), velocity u(x,t), and electric field E(x,t), all depending on one spatial coordinate x and time t. Ions with density N 0 are modelled as a uniform, immobile, neutralizing background. This plasma is described by the 1D equations:

10. Problem: Normalized non-linear 1D plasma equations show that the the 1D plasma equations reduce to We now look for full non-linear propagating wave solutions of the form Using the dimensionless quantities

11. Problem: Derive non-linear wave shapes Show that the non-linear velocity can be obtained analytically in non-relativistic approximation from with the implicit solution Notice that this reproduces the linear plasma wave for small wave amplitude  m. Then discuss the non-linear shapes qualitatively: Verify that the extrema of , n(  ), and the zeros of E(  ) do not shift in  when increasing  m, while the zeros of  (  ), n(  ), and the extrema of E(  ) are shifted such that velocity and density develop sharp crests, while the E-field acquires a sawtooth shape.

13. Problem: Maximum electron energy gain W max 0 acceleration range Verify energy gain for electron injected at phase Velocity according to drawing: Show that maximum energy for wavebreaking is

14. Problem: Verfy the Example E-field at wave-breaking: Plasma: Laser: Dephasing length: Required laser power:

Electron Trapping in the Broken-Wave Regime Plasma density: 3.5×10 19 /cm 3 Laser pulse : 6.6 fs 20 mJ 3 TW a 0 =1.7 Trapped electrons: colour ~ p z /mc Pukhov, MtV, Appl.Phys. B74, 355 ( 2002) Laser pulse 2000

Bubble regime: Ultra-relativistic laser, I=10 20 W/cm 2 : A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) VLPL laser 12J, 33 fs trapped e - 0 Z/ -50 cavity E, MeV t=350 t=450 t=550 t=650 t=750 t= N e / MeV Time evolution of electron spectrum

The Bubble: Details A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) 0 Z/ -50 T=500 T=700 laser 12J, 33 fs trapped e - cavity 700 Z / 500  (g)  -factor of electrons n e / n c a 2 eE z /mc  0 (f) (e) (d) Z/ Nonlinear laser compression down to a one-cycle pulse cavity wall e - beam accelerating field VLPL The trapping cross-section is  tr ~ 3  m 2

Mangles et al, Rutherford: 70 MeV beam Geddes et al, LBNL: 85 MeV beam Faure et al, LOA: 170 MeV beam Observation of monoenergetic electron beams Nature 431 (2004):

First observation of bubble acceleration J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004) Laser pulse: 1J, 30 fs He-gas n e = 6  cm -3 B=0 B>0 energy: 170 ± 20 MeV charge: 0.5 nC divergence: 10 mrad 10% laser->electron conv. n e = 2  cm -3

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004) Experiment Simulation (Pukhov) Electron spectrum peaked in energy The experimental spectrum is peaked in energy in good agreement with 3D-PIC simulation

04080 E (MeV) Electrons/MeV 2x10 9 electrons at 70 ± 10 MeV 15 % of laser energy 1 E z (TV/m) Bubble Acceleration (3D-PIC) M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006).( n e (10 20 cm -3 ) Laser z (  m) Laser 5fs, 115 mJ plasma: 2 x10 19 cm -3 (a 0 =5) electron path

S. Gordienko, A. Pukhov, Phys. Plasmas 12, (2005)

3D-PIC movie (5 fs, 115 mJ,a 0 =5) M. Geissler (2005) M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006).

a 0 = 3 a 0 =5 Intensity threshold for electron trapping in bubble M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, NJP submitted (2006).

Number of electrons in peak > 60 MeV In bubble volume initially Energy in peak Laser energy Number and total energy of 70 MeV electrons extract beam

Particle trajectories: 5fs, a=5, 60-80MeV e -

“Monoenergetic” Energy Spectra from Regular Structures Regular accelerating structure  E =E(x 0 ) “Monoenergetic” spikes at stationary points Universal spectrum for continuous particle trapping For LWFA case see also T. Esirkepov et al., PRL, 2006 At a first-order maximum

“Monoenergetic” Energy Spectra from Stationary Points dN/dE EmEm E 1 st order maximum E EmEm x0x0 x 0m N E, MeV t=350 t=450 t=550 t=650 t=750 t= e

The bubble fields Kostyukov, Pukhov, Kiselev, Phys. Plasmas 11, 5256 (2004) Maxwellpotentialsspherical bubble: laboratory frame choose gauge solution: harmonic oscillator potential

The bubble fields E field: potentials: B field: Force on electron with velocity :

Consider a spherical bubble (radius R, n e = 0, n i =n 0 for r < R) moving in the lab frame in x-direction at velocity c. Show that the electric potential corresponds to a harmonic oscillator Start from Maxwell equations (no current inside bubble: ions static, no electrons!) with normalized quantities (confirm!) Use gauge for vector potential (why allowed ?). Derive the electric and the magnetic field inside the bubble. Show that an electron comoving with the bubble at velocity c experiences a force linear in bubble radius, while no transverse force acts on an electron moving in opposite direction (v=-ce x ). 12. Problem: Bubble fields (Kostyukov, Pukhov, Kiselev, Phys. Plasmas 11, 5256 (2004))

13. Problem: Ultra-relativistic laser plasma scaling S. Gordienko, A. Pukhov, Phys. Plasmas 12, (2005) rel. laser plasma equations Show that, in ultra-relativistic limit ( a 0 >>1 ), scaled. laser plasma equations depend only on three parameters:

Geometric Similarity, S=10 -3 =const (i) a2a ne/ncne/nc Y / a 0 =10 n e = 0.01n c (ii) a2a ne/ncne/nc a 0 =20 n e = 0.02n c (iii) a2a2 X / ne/ncne/nc a 0 =40 n e = 0.04n c (iv) a2a2 X / ne/ncne/nc a 0 =80 n e = 0.08n c Gordienko, Pukhov, Phys. Plasmas 12, (2005)

bubble regime scales with peak electron energy number of acc. electrons optimal focus laser-to-electron efficiency

Conventional accelerators 50 GeV LINAC at Stanford 3 km 30 km International Liner Collider: 500 GeV, 31 km, $6.7 bln The accelerating field is limited to a few 10 MeV/m

Present day accelerators are tens of kilometers long and reach their limits in size. The hope is that laser accelerators can be built with much smaller dimensions reaching higher energies

Accelerating fields Conventional RF accelerators E < 100 MV/m limit set by electrical breakdown Space charge fields, laser-generated E  mc  p /e < 100 TV/m for solid-density plasma E Laser W/cm 2

5 GeV protons at W/cm 2 1 kJ, 15 fs laser pulse focussed on 10  m spot of /cm 3 plasma protons GeV

Selected Publications: T. Tajima, J.M. Dawson, Phys.Rev.Lett. 43, 267 (1979) Pukhov & Meyer-ter-Vehn, Appl. Phys. B74, 355 (2002). S. Gordienko, A. Pukhov, Phys. Plasmas 12, (2005). Kostyukov, Pukhov, Kiselev, Phys. Plasmas 11, 5256 (2004). E.Easarey, P.Sprangle, J.Krall, A.Ting, IEEE Trans. Plas.Science 24, 252 (1966). Recent Survey and Collection of papers on: Laser-driven particle accelerators: new sources of energetic particles and radiation. Ed. K.Burnett, D. Jaroszynski, S. Hooker, Phil. Trans. Royal Soc. A 364, 551 – 778 (2006) Exp. Observation of laser-driven mono-energetic electron beams: Nature 431 (2004) Dream Beam Issue, 1.S.P.Mangles, C.D.Murphy, Z.Najmudin et al., 2.C.G. Geddes, E.Esarey, W.P.Leemans et al. 3. J. Faure, Y. Glinec, A. Pukhov, V. Malka, et al. F.S.Tsung, W. Lu, M.Tsoulas, W.B.Mori, C. Joshi, J.M. Vieira, L.O.Silva, R.A.Fonseca, Phys. Plasmas 13, (2006). M.Geissler, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006).