1 Final Review Econ 240A. 2 Outline The Big Picture Processes to remember ( and habits to form) for your quantitative career (FYQC) Concepts to remember.

Slides:



Advertisements
Similar presentations
AP Statistics Course Review.
Advertisements

Exponential Distribution. = mean interval between consequent events = rate = mean number of counts in the unit interval > 0 X = distance between events.
Week11 Parameter, Statistic and Random Samples A parameter is a number that describes the population. It is a fixed number, but in practice we do not know.
1 Midterm Review. 2 Econ 240A  Descriptive Statistics  Probability  Inference  Differences between populations  Regression.
Use of moment generating functions. Definition Let X denote a random variable with probability density function f(x) if continuous (probability mass function.
Chapter 1 Probability Theory (i) : One Random Variable
1 Econ 240A Power Outline Review Projects 3 Review: Big Picture 1 #1 Descriptive Statistics –Numerical central tendency: mean, median, mode dispersion:
1 Lecture Twelve. 2 Outline Failure Time Analysis Linear Probability Model Poisson Distribution.
1 Econ 240A Power 7. 2 This Week, So Far §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and Hypothesis Testing.
1 Power 14 Goodness of Fit & Contingency Tables. 2 II. Goodness of Fit & Chi Square u Rolling a Fair Die u The Multinomial Distribution u Experiment:
Descriptive statistics Experiment  Data  Sample Statistics Sample mean Sample variance Normalize sample variance by N-1 Standard deviation goes as square-root.
1 Midterm Review Econ 240A. 2 The Big Picture The Classical Statistical Trail Descriptive Statistics Inferential Statistics Probability Discrete Random.
Probability Densities
1 ECON 240A Power 5. 2 Last Tuesday & Lab Two Discrete Binomial Probability Distribution Discrete Binomial Probability Distribution.
1 Regression Econ 240A. 2 Outline w A cognitive device to help understand the formulas for estimating the slope and the intercept, as well as the analysis.
1 Econ 240A Power Four Last Time Probability.
1 Econ 240A Power 7. 2 This Week, So Far §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and HypothesisTesting.
Descriptive statistics Experiment  Data  Sample Statistics Experiment  Data  Sample Statistics Sample mean Sample mean Sample variance Sample variance.
1 Lecture Twelve. 2 Outline Projects Failure Time Analysis Linear Probability Model Poisson Approximation.
1 ECON 240A Power 5. 2 Last Week b Probability b Discrete Binomial Probability Distribution.
1 Econ 240A Power Outline Review Projects 3 Review: Big Picture 1 #1 Descriptive Statistics –Numerical central tendency: mean, median, mode dispersion:
Probability and Statistics Review
1 ECON 240A Power 5. 2 Last Tuesday & Lab Two b Probability b Discrete Binomial Probability Distribution.
1 Final Review Econ 240A. 2 Outline The Big Picture Processes to remember ( and habits to form) for your quantitative career (FYQC) Concepts to remember.
1 Economics 240A Power Eight. 2 Outline Lab Four Lab Four Maximum Likelihood Estimation Maximum Likelihood Estimation The UC Budget Again The UC Budget.
1 Economics 240A Power Eight. 2 Outline n Maximum Likelihood Estimation n The UC Budget Again n Regression Models n The Income Generating Process for.
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
1 Econ 240A Power 7. 2 Last Week §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and HypothesisTesting.
1 Econ 240A Power 7. 2 This Week, So Far §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and Hypothesis Testing.
1 Final Review Econ 240A. 2 Outline The Big Picture Processes to remember ( and habits to form) for your quantitative career (FYQC) Concepts to remember.
1 Regression Econ 240A. 2 Retrospective w Week One Descriptive statistics Exploratory Data Analysis w Week Two Probability Binomial Distribution w Week.
Statistical Inference Lab Three. Bernoulli to Normal Through Binomial One flip Fair coin Heads Tails Random Variable: k, # of heads p=0.5 1-p=0.5 For.
1 Econ 240A Power Four Last Time Probability.
The Lognormal Distribution
Normal and Sampling Distributions A normal distribution is uniquely determined by its mean, , and variance,  2 The random variable Z = (X-  /  is.
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
Probability Theory Summary
B AD 6243: Applied Univariate Statistics Understanding Data and Data Distributions Professor Laku Chidambaram Price College of Business University of Oklahoma.
Standard Statistical Distributions Most elementary statistical books provide a survey of commonly used statistical distributions. The reason we study these.
Statistics for Engineer Week II and Week III: Random Variables and Probability Distribution.
Moment Generating Functions
Functions of Random Variables. Methods for determining the distribution of functions of Random Variables 1.Distribution function method 2.Moment generating.
ENGR 610 Applied Statistics Fall Week 3 Marshall University CITE Jack Smith.
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 6 Some Continuous Probability Distributions.
1 Economics 240A Power Eight. 2 Outline n Maximum Likelihood Estimation n The UC Budget Again n Regression Models n The Income Generating Process for.
MATH 4030 – 4B CONTINUOUS RANDOM VARIABLES Density Function PDF and CDF Mean and Variance Uniform Distribution Normal Distribution.
Stats Probability Theory Summary. The sample Space, S The sample space, S, for a random phenomena is the set of all possible outcomes.
B AD 6243: Applied Univariate Statistics Data Distributions and Sampling Professor Laku Chidambaram Price College of Business University of Oklahoma.
IE 300, Fall 2012 Richard Sowers IESE. 8/30/2012 Goals: Rules of Probability Counting Equally likely Some examples.
Chapter 4 Continuous Random Variables and Probability Distributions  Probability Density Functions.2 - Cumulative Distribution Functions and E Expected.
Beginning Statistics Table of Contents HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant Systems, Inc.
Chapter 5 Sampling Distributions. Introduction Distribution of a Sample Statistic: The probability distribution of a sample statistic obtained from a.
Course Review. Distributions What are the important aspects needed to describe a distribution of one variable? List three types of graphs that could be.
WARM UP: Penny Sampling 1.) Take a look at the graphs that you made yesterday. What are some intuitive takeaways just from looking at the graphs?
Statistics -Continuous probability distribution 2013/11/18.
Statistics and probability Dr. Khaled Ismael Almghari Phone No:
Final Review Econ 240A.
ASV Chapters 1 - Sample Spaces and Probabilities
Chapter 4 Continuous Random Variables and Probability Distributions
Review 1. Describing variables.
AP Stat Review Know Your Book!
Economics 240A Power Eight.
Chapter 4 Continuous Random Variables and Probability Distributions
إحص 122: ”إحصاء تطبيقي“ “Applied Statistics” شعبة 17130
Chapter 6 Some Continuous Probability Distributions.
Chapter 3 : Random Variables
Review of Hypothesis Testing
Introductory Statistics
Moments of Random Variables
Applied Statistical and Optimization Models
Presentation transcript:

1 Final Review Econ 240A

2 Outline The Big Picture Processes to remember ( and habits to form) for your quantitative career (FYQC) Concepts to remember FYQC Discrete Distributions Continuous distributions Central Limit Theorem Regression

The Classical Statistical Trail Descriptive Statistics Inferential Statistics Probability Discrete Random Variables Discrete Probability Distributions; Moments Binomial Application Rates & Proportions

4 Where Do We Go From Here? Regression Properties Assumptions Violations Diagnostics Modeling Probability Count ANOVA Contingency Tables

5 Processes to Remember Exploratory Data Analysis Distribution of the random variable Histogram Lab 1 Stem and leaf diagram Lab 1 Box plot Lab 1 Time Series plot: plot of random variable y(t) Vs. time index t X-y plots: Y Vs. x 1, y Vs. x 2 etc. Diagnostic Plots Actual, fitted and residual

6 Concepts to Remember Random Variable: takes on values with some probability Flipping a coin Repeated Independent Bernoulli Trials Flipping a coin twice Random Sample Likelihood of a random sample Prob(e 1 ^e 2 …^e n ) = Prob(e 1 )*Prob(e 2 )…*Prob(e n )

7 Discrete Distributions Discrete Random Variables Probability density function: Prob(x=x*) Cumulative distribution function, CDF Equi-Probable or Uniform E.g x = 1, 2, 3 Prob(x=1) =1/3 = Prob(x=2) =Prob(x=3)

8 Discrete Distributions Binomial: Prob(k) = [n!/k!*(n-k)!]* p k (1-p) n-k E(k) = n*p, Var(k) = n*p*(1-p) Simulated sample binomial random variable Lab 2 Rates and proportions Poisson

9 Continuous Distributions Continuous random variables Density function, f(x) Cumulative distribution function Survivor function S(x*) = 1 – F(x*) Hazard function h(t) =f(t)/S(t) Cumulative hazard functin, H(t)

10 Continuous Distributions Simple moments E(x) = mean = expected value E(x 2 ) Central Moments E[x - E(x)] = 0 E[x – E(x)] 2 =Var x E[x – E(x)] 3, a measure of skewness E[x – E(x)] 4, a measure of kurtosis

11 Continuous Distributions Normal Distribution Simulated sample random normal variable Lab 3 Approximation to the binomial, n*p>=5, n*(1-p)>=5 Standardized normal variate: z = (x-  )/  Exponential Distribution Weibull Distribution Cumulative hazard function: H(t) = (1/  )  t  Logarithmic transform ln H(t) = ln (1/  )  +  lnt

12

13

14 Central Limit Theorem Sample mean,

15 Population Random variable x Distribution f(    f ? Sample Sample Statistic: Sample Statistic Pop.

16 The Sample Variance, s 2 Is distributed chi square with n-1 degrees of freedom (text, 12.2 “inference about a population variance) (text, pp , Chi-Squared distribution)

17 Regression Models Statistical distributions and tests Student’s t F Chi Square Assumptions Pathologies

18 Regression Models Time Series Linear trend model: y(t) =a + b*t +e(t) Lab 4 Exponential trend model: y(t) =exp[a+b*t+e(t)] Natural logarithmic transformation ln Ln y(t) = a + b*t + e(t) Lab 4 Linear rates of change: y i = a + b*x i + e i dy/dx = b Returns generating process: [r i (t) – r f 0 ] =  +  *[r M (t) – r f 0 ] + e i (t) Lab 6

19 Regression Models Percentage rates of change, elasticities Cross-section Ln assets i =a + b*ln revenue i + e i Lab 5  dln assets/dlnrevenue = b = [dassets/drevenue]/[assets/revenue] = marginal/average

20 Linear Trend Model Linear trend model: y(t) =a + b*t +e(t) Lab 4

21 Lab 4

22 Lab Four t-test: H 0 : b=0 H A : b≠0 t =[ – 0]/ = -14 F-test: F 1,36 = [R 2 /1]/{[1-R 2 ]/36} = 196 = Explained Mean Square/Unexplained mean square

23 Lab 4

24 Lab 4

25 Lab 4 2.5%

26 Lab Four % 196

27 Exponential Trend Model Exponential trend model: y(t) =exp[a+b*t+e(t)] Natural logarithmic transformation ln Ln y(t) = a + b*t + e(t) Lab 4

28 Lab Four

29 Lab Four

30 Percentage Rates of Change, Elasticities Percentage rates of change, elasticities Cross-section Ln assets i =a + b*ln revenue i + e i Lab 5  dln assets/dlnrevenue = b = [dassets/drevenue]/[assets/revenue] = marginal/average

31 Lab Five Elasticity b = H 0 : b=1 H A : b<1 t 25 = [0.778 – 1]/0.148 = t-crit(5%) = -1.71

32 Linear Rates of Change Linear rates of change: y i = a + b*x i + e i dy/dx = b Returns generating process: [r i (t) – r f 0 ] =  +  *[r M (t) – r f 0 ] + e i (t) Lab 6

33 Watch Excel on xy plots! True x axis: UC Net

34 Lab Six r GE = a + b*r SP500 + e

35 Lab Six

36 Lab Six

37 View/Residual tests/Histogram-Normality Test

38 Linear Multivariate Regression House Price, # of bedrooms, house size, lot size P i = a + b*bedrooms i + c*house_size i + d*lot_size i + e i

39 Lab Six price bedrooms House_size Lot_size

40 Price = a*dummy2 +b*dummy34 +c*dummy5 +d*house_size01 +e

41 Lab Six C captures three and four bedroom houses

42 Regression Models How to handle zeros? Labs Six and Seven: Lottery data-file Linear probability model: dependent variable: zero-one Logit: dependent variable: zero-one Probit: dependent variable: zero-one Tobit: dependent variable: lottery See Project I PowerPoint application to vehicle type data

43 Regression Models Failure time models Exponential Survivor: S(t) = exp[- *t], ln S(t) = - *t Hazard rate, h(t) = Cumulative hazard function, H(t) = *t Weibull Hazard rate, h(t) = f(t)/S(t) = (  /  )(t/  )  -1 Cumulative hazard function: H(t) = (1/  )  t  Logarithmic transform ln H(t) = ln (1/  )  +  lnt