12 CO(1-0) emission in the Magellanic Clouds, according to Mopra (Also starring the Magellanic Bridge…) Erik Muller ATNF/CSIRO Collaborators so far: Juergen.

Slides:



Advertisements
Similar presentations
The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Advertisements

High-Mass Star-Forming Regions in the G333 Cloud Indra Bains & the DQS team.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
The Galactic Center: Molecular Line Mapping with Broadband Spectrometers Jürgen Ott ESO 3D Meeting 11 June 2008 The Galactic Center: Molecular Line Mapping.
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
Lister Staveley-Smith – GALFA March 21, Parkes HI Surveys  HIPASS –An extragalactic survey reprocessed for Galactic science  Magellanic System.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
21 November 2002Millimetre Workshop 2002, ATNF First ATCA results at millimetre wavelengths Vincent Minier School of Physics University of New South Wales.
21 November 2002Millimetre Workshop 2002, ATNF Millimetre ATCA Results Vincent Minier School of Physics UNSW.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Constraining the Physics of Star Formation in Galaxies Using the JVLA and GBT Amanda Kepley NRAO - GB.
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
Molecular Clouds and Star Formation in the Magellanic Bridge and the SMC Yasuo Fukui, Norikazu Mizuno ( Nagoya University ) LMC SMC Magellanic Bridge Putman.
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
Submillimeter and IR Studies of Molecular Regions in the Magellanic Clouds Mónica Rubio Universidad de Chile CCAT Workshop, Koln, 5oct11.
High-Resolution Observations of the Magellanic Stream Deanna Matthews Dr Lister Staveley-Smith Professor Peter Dyson La Trobe University ATNF, CSIRO La.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
Sub-mm/mm astrophysics: How to probe molecular gas
MX002: Molecular Gas in the LMC MX002 observers in 2005: Juergen Ott, Tony Wong, Erik Muller, Jorge Pineda, Min Wang, Annie Hughes.
Radio continuum, CO, and thermal infrared emission in nearby star-forming galaxies Tony Wong CSIRO Australia Telescope & University of New South Wales.
Class I methanol masers in the regions of high-mass star-formation Max Voronkov Software Scientist – ASKAP In collaboration with: Caswell J.L., Ellingsen.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
CO, CS or other molecules? Maria Cunningham, UNSW.
10 January 2006AAS EVLA Town Hall Meeting1 The EVLA: A North American Partnership The EVLA Project on the Web
Study of H I and Star Formation Sites in the Magellanic Bridge Erik Muller: University of Wollongong, ATNF. Lister Staveley-Smith: ATNF. Bill Zealey: University.
A MINIMUM COLUMN DENSITY FOR O-B STAR FORMATION: AN OBSERVATIONAL TEST Ana López Sepulcre INAF - Osservatorio Astrofisico di Arcetri (Firenze, ITALY) Co-authors:
HOPS – The H 2 O southern Galactic Plane Survey Image Courtesy: Cormac Purcell.
Frayer (1) Redshifted Molecular Gas – Evolution of Galaxies David T. Frayer (NRAO) ALMA-Band ALMA Band-2 (68-90 GHz) is a crucial missing band for.
Statistical Tools applied to the Magellanic Bridge Statistical tools applied to the H I Magellanic Bridge Erik Muller (UOW, ATNF) Supervisors: Lister Staveley-Smith.
A study of the H I expanding shell population of the Magellanic Bridge Erik Muller: University of Wollongong Australia Telescope National Facility Supervisors:
MAGMA: The Magellanic Mopra Assessment Tony Wong University of Illinois at Urbana-Champaign Collaborators: Annie Hughes (Swinburne/ATNF), Erik Muller (Nagoya.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Molecular Clouds in in the LMC at High Resolution: The Importance of Short ALMA Baselines T. Wong 1,2,4, J. B. Whiteoak 1, M. Hunt 2, J. Ott 1, Y.-N. Chin.
Supervisors: Maria Cunningham (UNSW), James Urquhart (CSIRO) Michael Burton (UNSW) Collaborators: Nadia Lo (UNSW/CSIRO), Bhaswati Mookerjea (Tata Institute)
An Investigation of the Molecular-FIR-Radio correlation at small scales in the Galaxy Mónica Ivette Rodríguez Dr. Laurent Loinard (UNAM - México) Dr. Tommy.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
Elizabeth Stanway - Obergurgl, December 2009 Lyman Break Galaxies as Markers for Large Scale Structure at z=5 Elizabeth Stanway University of Bristol With.
Masers Surveys with Mopra: Which is best 7 or 3 mm? Simon Ellingsen, Maxim Voronkov & Shari Breen 3 November 2008.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
ALMA Observations of proto-planetary disks I HD – P.I. Casassus 2013 Nature 493, 191 Herbig Ae star 140 pc, 2 Myr, 1.9 M , disk mass 0.1 M  Left:
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Jet Propulsion Laboratory
VALLIA ANTONIOU IOWA STATE UNIVERSITY High Energy View of Accreting Objects: AGN and X-ray Binaries Agios Nikolaos, Crete, Greece October 2010.
Possible Future Spectroscopic Star Formation Surveys James Di Francesco (National Research Council Herzberg)
Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM.
The Mopra Galactic Plane CO Survey the Mopra Galactic Plane CO Survey Catherine Braiding University of New South Wales Michael.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
講義資料 2 京都大学大学院 2011 年 10 月 3-5 日 特別講義「電波天文学」 福井康雄 名古屋大学大学院 1.
Low-luminosity Extragalactic H 2 O Masers Yoshiaki Hagiwara ASTRON.
Neutral Atomic Hydrogen Gas at Forbidden Velocities in the Galactic Plane Ji-hyun Kang NAIC Seoul National University Supervisor :Bon-Chul Koo 213 th AAS.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
Where and How Are Massive Stars Formed in Isolation? You-Hua Chu (U of Illinois) In collaboration with: R. Gruendl, R. Chen*, M. Gelman, M. Johnson (Illinois)
Atomic gas Molecular clouds
Tony Wong CSIRO Australia Telescope & University of New South Wales
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Max Voronkov Software Scientist – ASKAP 14th December 2010
Chemical evolution of N2H+ in massive star-forming regions
Mikako Matsuura National Astronomical Observatory of Japan
Atomic Gas associated with GMCs in the LMC
Presentation transcript:

12 CO(1-0) emission in the Magellanic Clouds, according to Mopra (Also starring the Magellanic Bridge…) Erik Muller ATNF/CSIRO Collaborators so far: Juergen Ott (PI, ATNF), Annie Hughes (Swinburne), Tony Wong (ATNF/UNSW), Jorge Pineda (Bonn) and more.

Why CO in the Mag. Clouds? ► 12 CO(1-0) is a tracer for lower-density molecular gas - signpost for SF. ► MCs are nearby (50-60 kpc) & have very low metallicities  (LMC=0.5 Z sol, SMC = 0.1 Z sol ),  Emulate conditions as they were in the early universe?

Technical… ► Observation strategy:  Observe ~5x5 amin region in OTF mode (RA - direction) ► CO(1-0) ( GHz) ► ~1.75 hrs per area  BW~64 MHz  ΔV = ~0.16 Km/s  RMS~0.4 K (before smoothing) ► GHz ~>400 K

SMC: SW SF region. Spitzer data: Bolatto et al (Priv. Comm)

SMC: CO according to NANTEN Nanten 12 CO(1-0) overlaid on SERC-J. Mizuno et al, 2001 N84 N27 N66 N12

CO SMC: 12 CO(1-0) CO + NANTEN Rubio et al, 1993a, 1993b,1996 Latest result, smoothed to 90 asec, rebinned in velocity to ~0.5km/s, 3sig clip.

CO SMC: 12 CO(1-0) N27/LIRS 49N12/LIRS 36 N25/26 N21/23 Latest result, smoothed to 90 asec, rebinned in velocity to ~0.5km/s, 3sig clip. ?? SMC B1#1 Data is ‘first pass’ only. Very noisy! Only three peaks appear where I CO >5sig! Need deeper observations…

SMC: 12 CO(1-0) Rubio et al, 1993a, 1993b, 1996 (θ~43 ” ) MX002 (θ~25 ” ) - fit by eye. - fit by eye. LIRS 49 V=114.6, ΔV=5.2, Tmb=1.99 I CO =11.0, R c ~16.7 pc M VIR = (M sol ) * V=115, ΔV=~4±1.6, Tmb=~1.6±0.4,. I CO =6.4±3, R c ~13 M VIR ~5.2x10 4 (M sol ) (!) LIRS 36 V=126.1, ΔV=3.4, Tmb=2.32 I CO =8.45, R c ~18.6 M VIR = (M sol ) * V=126, ΔV=3 ±1.6, Tmb=2.23 ±0.4 I CO =6.7 ± 4, R c ~ 15 pc M VIR ~3.3x10 4 (M sol ) (!) New Mopra Results are generally consistent with the literature. “Clumpfind” does not perform well with noisy data. Using alternatives…

SMC: 12 CO(1-0), H I CO N27/LIRS 49 N12/LIRS 36 N25/26 N21/23 ?? SMC B1#1 H I (1/25) CO

APEX, high order transitions of CO (4-3) Comparable resolutions to Mopra ASTE observations are underway (U Nagoya) SMC: ASTE/APEX Contours: APEX CO(4-3) transition. Background image: 2MASS J band – (UMASS/IPAC)

I CO, T mb are much lower for SMC than for LMC (can be x ~10!) Cloud radii are much smaller in SMC than for LMC More exact quantifiction of ‘much smaller’ pending less noisy results ~R lmc /R smc ~2-3 for brightest clouds). ΔV lmc / ΔV smc ~2 Mvir lmc /Mvir smc ~ 8-12 (or more..) LMC, SMC: 12 CO(1-0)

HαHα SMC: CO, Hα CO N27/LIRS 49N12/LIRS 36 N25/26 N21/23

SMC. Where to with Mopra? Continue to fully sample SW area with Mopra? Multi wavelength obs for N88/N66 ? CO(3-2) has comparable resolution to CO(1-0) Other regions in SMC? Existing CO(1-0) (and (2-1)) data for N66 are small field and mostly under sampled Dense core tracers (or ATCA? E.g. Muller+Ott in prep. HCO+, HCN)