KRZYSZTOF FITZNER DOMINIKA JENDRZEJCZYK WOJCIECH GIERLOTKA * AGH University of Science and Technology, Faculty of Non- Ferrous Metal, Krakow, Poland *National.

Slides:



Advertisements
Similar presentations
Fig. 22-1a (p.629) A galvanic electrochemical cell at open circuit
Advertisements

Chapter 20: Electrochemistry
Mrs Khadijah Hanim bt Abdul Rahman Sem II 2011/2012 Week 15: 28 & 31 May 2012.
Chemistry 232 Electrochemistry. A Schematic Galvanic Cell Galvanic cells – an electrochemical cell that drives electrons through an external circuit spontaneous.
Oxidation Reduction Regents Review.
Types of Electrochemical Cells Electrolytic Cells: electrical energy from an external source causes a nonspontaneous reaction to occur Voltaic Cells (Galvanic.
Thermodynamics in Corrosion Engineering
Chapter 17 Electrochemistry
Electrochemistry II. Electrochemistry Cell Potential: Output of a Voltaic Cell Free Energy and Electrical Work.
Lecture 253/27/06 Bottle and Can drive today 11-3 Hagan Info Booth Seminar today at 4 pm.
Standard Cell Notation (line notation)
Determination of thermodynamic properties of liquid Ag-In, Ag-Sb, Ag-Sn, In-Sb, Sb-Sn, Ag-In-Sb, Cu-In-Sn and Ag-In-Sn systems by Knudsen effusion Mass.
Fig. 2In-Pd-Sn: Composition of the samples and position of the sections for calorimetry at 900°C. *Corresponding Author: Tel.-No , FAX-No.
COST Action 531 Lead-free Solder Materials. Structural, physical and technological properties of lead-free solder materials on the base of tin Jaromír.
Lead-free Solder Alloys: Enthalpies of formation of (Ag,Cu,Ni)-Sn binary alloys U. Saeed, H. Flandorfer, H. Ipser Institute of Inorganic Chemistry / Materials.
A brief summary of thermodynamic properties of various ternary systems investigated by EMF and Calorimetric method Sabine Knott and Adolf Mikula Institute.
Final Meeting of the COST Action 531 Lead-Free Solder Materials May 17th – 18th, 2007 Vienna, Austria Report presented by Z. Moser.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
Database for Calculation of Phase Equilibria in Systems for Lead-Free Solders Aleš Kroupa 1, Jiří Vízdal 1,2, Adéla Zemanová 2, Jan Vřešťál 2 1 Institute.
Batteries and Fuel Cells
Reduction Potential and Cells
Electrochemistry The first of the BIG FOUR. Introduction of Terms  Electrochemistry- using chemical changes to produce an electric current or using electric.
Electrochemistry Chapter 19.
ELECTROCHEMICAL CELLS. TASK Sequence these elements starting from the most reactive to the least reactive: Na, Pt, Au, C, H, Sn, Pb, Al, C, Mg, Li, Ca,
Chemistry 100 – Chapter 20 Electrochemistry. Voltaic Cells.
Section 10.3—Batteries & Redox Reactions
Chapter 21: Electrochemistry II
Electrochemistry The study of the interchange of chemical and electrical energy. Sample electrochemical processes: 1) Corrosion 4 Fe (s) + 3 O 2(g) ⇌
Electrochemistry - The relationship between chemical processes and electricity oxidation – something loses electrons reduction – something gains electrons.
6/2/20161 CHAPTER 2 CORROSION PRINCIPLES Chapter Outlines 2.1 Oxidation and Reduction Reactions 2.2 Standard Electrode Half- Cell Potentials 2.3 Standard.
John E. McMurry Robert C. Fay C H E M I S T R Y Chapter 17 Electrochemistry.
Electrochemistry Electrochemical Cells –Galvanic cells –Voltaic cells –Nernst Equation –Free Energy.
Chapter 17 Electrochemistry
Electrolysis Electrolysis: Forcing a current through a cell to produce a chemical change for which the cell potential is negative. A Galvanic Cell in Reverse!!!
Galvanic Cell: Electrochemical cell in which chemical reactions are used to create spontaneous current (electron) flow.
Electric energy Chemical energy Electrolysis Galvanic cell Chapter 8 Electrochemistry.
Chapter 17 Electrochemistry
Unit 16 Electrochemistry Oxidation & Reduction. Oxidation verses Reduction Gain oxygen atoms 2 Mg + O 2  2 MgO Lose electrons (e - ) Mg (s)  Mg + 2.
Reduction- Oxidation Reactions (1) 213 PHC 9 th lecture Dr. mona alshehri (1) Gary D. Christian, Analytical Chemistry, 6 th edition. 1.
Electrolytic Cells. Endothermic.Use electricity to force a nonspontaneous reaction to occur. Endothermic. Electrolytic cells can be identified by the.
Common borders. Common solutions. EUROPEAN UNION GOVERNMENT OF ROMANIA SERBIAN GOVERNMENT Structural Funds Romania – Republic of Serbia IPA Cross-border.
Chapter 19: Electrochemistry: Voltaic Cells Generate Electricity which can do electrical work. Voltaic or galvanic cells are devices in which electron.
Electrolytic Cells utilizes electrical energy to create chemical energy.
Electrochemistry. #13 Electrochemistry and the Nernst Equation Goals: To determine reduction potentials of metals To measure the effect of concentration.
Electrochemistry - The relationship between chemical processes and electricity oxidation – something loses electrons reduction – something gains electrons.
John E. McMurry Robert C. Fay C H E M I S T R Y Sixth Edition Chapter 17 Electrochemistry © 2012 Pearson Education, Inc.
Chapter 20 Electrochemistry
17.1 Galvanic Cells (Batteries)
S2 SCIENCE CHEMICAL REACTIONS
Chapter 10.7 Electrolysis.
AGH University of Science
Electrochem Practice Day 1 Section 12.4
CHAPTER 6: FIGURE 6B.2 PHYSICAL CHEMISTRY: THERMODYNAMICS, STRUCTURE, AND CHANGE 10E | PETER ATKINS | JULIO DE PAULA ©2014 W. H. FREEMAN AND COMPANY.
Cell Potentials and Good Batteries
Voltaic Cells.
14.2a Voltaic Cells Basic Function.
Elements Pg Elements Pg Elements Element: __________________________________________________________________________ The number of.
Chapter 17: Electrochemistry
Electrochemistry.
utilizes electrical energy to create chemical energy
Electrolytic Cells.
Electrochemistry Oxidation & Reduction
You will have to completely label a diagram to look like this
Electrochemistry The study of the interchange
Recall the definition of standard cell potential understand the need for a reference electrode Calculate the standard cell potential.
utilizes electrical energy to create chemical energy
AP Chem Get HW checked Work on oxidation # review
AP Chem Get HW checked Take out laptops and go to bit.ly/GalCell
Galvanic Cells Assignment # 17.1.
Electrochemistry Kenneth E. Schnobrich.
Presentation transcript:

KRZYSZTOF FITZNER DOMINIKA JENDRZEJCZYK WOJCIECH GIERLOTKA * AGH University of Science and Technology, Faculty of Non- Ferrous Metal, Krakow, Poland *National Tsing-Hua University, Department of Chemical Ingeenering, Material Thermodynamics Laboratory Hsinchu,Taiwan EUROPEAN CONCERTED ACTION ON “Lead-free Solder Materials” COST 531

TASK DETERMINATION OF THERMODYNAMIC PROPERTIES AND PHASE EQUILIBRIA IN: FORCES OF WG8 1.Jan Vrestal and his group (Brno) 2.Dragana Zivkovic and her group (Bor) 3.Arkadij Popovic and Laslo Bencze (Liubliana and Budapest) 4.Krzysztof Fitzner, Dominika Jendrzejczyk, Wojciech Gierlotka (Krakow) Introduction

WORK DONE IN KRAKOW: E.M.F. MEASUREMENTS METHOD: GALVANIC CELLS WITH THE SOLID OXIDE ELECTROLYTE solid electrolyte Fig. 1

Ag-In-Sb Re + kanthal, Ag-In-Sb//ZrO 2 + Y 2 O 3 //NiO, Ni, Pt ( I ) Electrode reactions are: a) at the RHS electrode: 3Ni + 6e = 3 Ni + 3 O -2 (1) b) at the LHS electrode: 2 In + 3 O -2 = 6e + In 2 O 3 (2) Consequently, the overall cell I reaction is: 3 Ni O + 2 In = In 2 O Ni (3) (4)

Ag-In-Sb Fig. 2 a) x Ag /x Sb =3:1 Fig. 2 b) x Ag /x Sb =1:1 Fig. 2 c) x Ag /x Sb =1:3

Ag-In-Sb Table 1 x Ag /x Sb =3:1 Table 2 x Ag /x Sb =1:1 Table 3 x Ag /x Sb =1:3

Ag-In-Sb G E = x Ag x In (L 0 AgIn + L 1 AgIn (x Ag – x In )) + x Ag x Sb (L 0 AgSb + L 1 AgSb (x Ag – x Sb )) + x In x Sb (L 0 InSb + L 1 InSb (x In – x Sb ))+ x Ag x In x Sb (x Ag L 0 AgInSb + x In L 1 AgInSb + x Sb L 2 AgInSb ) (5) Table 4

Ag-In-Sb This work 1200 K - calculated Activity of indium x In Fig. 3 x Ag /x Sb =1:1

Ag-In-Sb Fig.4 x In / x Sb = 2:3 T = 1253K

Ag-In-Sb Fig. 5 Liquidus in Ag – In - Sb system

Ag-In-Sb and Cu-In-Sn Sn In O Fig. 6

Ag-In-Sn ‘ In 2 O 3 ‘ + liquid SnO 2 + liquid Fig. 7

Ag-In-Sn Re + kanthal, Ag-In-Sn, ’In 2 O 3 ’ //ZrO 2 + Y 2 O 3 //NiO, Ni, Pt The overall cell reaction is: 3 NiO + 2 In = ‘In 2 O 3, ’ + 3 Ni (6) (7)

Ag-In-Sn e.m.f./[mV] x In Fig. 8 a) x Ag /x Sn =3:1 x In e.m.f./[mV] Fig. 8 b) x Ag /x Sn =1:1 Fig. 8 c) x Ag /x Sn =1:3 e.m.f./[mV]

Ag-In-Sn x In E(mV) = a + b*T  ,72 – 0,1009 *T  1, ,29 – 0,1065 *T  0, ,91 – 0,1079 * T  0, ,45 – 0,1165 * T  0, ,80 – 0,1301 * T  0, ,00 – 0,1296 * T  0, ,30 - 0,1315 * T  0,50 x In E(mV) = a + b*T  ,72 – 0,1009 *T  1, ,34 – 0,1156 *T  0, ,46 – * T  0, ,75 – 0,1148 * T  0, ,70 – 0,1163 * T  0, ,28– 0,1257 * T  0, ,63 – 0,1320 * T  0,38 x In E(mV) = a + b*T  ,72 – 0,1009 *T  1, ,15 – 0,1108 * T  0, ,36 - 0,1160 * T  0, ,63 – 0,0890 * T  0, ,60 – 0,1210 * T  0, ,34 – 0,1198 * T  0, ,53 – 0,1343 * T  0, ,36 – 0,1304 * T  0,37 Table 5 x Ag /x Sn =3:1 Table 6 x Ag /x Sn =1:1 Table 7 x Ag /x Sn =1:3

Ag-In-Sn T = 1273 K Activity of indium Fig. 9 a) Binary Ag-In x In  emf method - calculated Activity of indium Fig. 9 e) Binary Sn-In x In  COST database - calculated Activity of indium x In  emf method  Popovic  Miki - calculated Fig. 9 c) x Ag /x Sn =1:1 Activity of indium x In  emf method  Popovic - calculated Fig. 9 b) x Ag /x Sn =3:1 Activity of indium x In  emf method  Popovic - calculated Fig. 9 d) x Ag /x Sn =1:3

Ag-In-Sn T = K Fig. 10 x Sn /x In =2:3 x Ag H mix (J*mol -1 )

Ag-In-Sn x In H mix / (J*mol -1 ) T= 1003K Fig. 11 x Ag /x Sn =1:1

Ag-In-Sn Fig. 12 Liquidus in Ag – In - Sn system

Cu-In-Sn ‘ In 2 O 3 ‘ + liquid SnO 2 + liquid Cu Fig. 13

Cu-In-Sn Re + kanthal, Cy-In-Sn, ’In 2 O 3 ’ //ZrO 2 + Y 2 O 3 //NiO, Ni, Pt The overall cell reaction is: 3 NiO + 2 In = ‘In 2 O 3 ’+ 3 Ni (8) (9)

Cu-In-Sn e.m.f./[mV] x In Fig. 14 a) x Cu /x Sn =3:1 e.m.f./[mV] Fig. 14 b) x Cu /x Sn =1:1 Fig. 14 c) x Cu /x Sn =1:3 e.m.f./[mV] x In

Cu-In-Sn x In E(mV) = a + b*T  ,72 – 0,1009 *T  1, ,25 – 0,1113 *T  0, ,50 – 0,1113 * T  0, ,67 – 0,1150 * T  0, ,34 – 0,1248 * T  0, ,73 – 0,1264 * T  0, ,08 - 0,1297 * T  0,55 x In E(mV) = a + b*T  ,72 – 0,1009 *T  1, ,20 – 0,1048 * T  0, ,78 - 0,1117 * T  0, ,74 – 0,1124 * T  0, ,90 – 0,1217 * T  0, ,27 – 0,1272 * T  0, ,56 – 0,1297 * T  0, ,68 – 0,1517 * T  0,76 x In E(mV) = a + b*T  ,72 – 0,1009 *T  1, ,33 – 0,1086 * T  0, ,13 - 0,1125 * T  0, ,79 – 0,1197 * T  0, ,16 – 0,1201 * T  0, ,19 – 0,1249 * T  0, ,68 – 0,1325 * T  0, ,72 – 0,1344 * T  0,40 Table 8 x Cu /x Sn =3:1 Table 9 x Cu /x Sn =1:1 Table 10 x Cu /x Sn =1:3

Cu-In-Sn Activity of indium Fig. 15 e) Binary Sn-In x In  COST database - calculated Fig. 15 a) Binary Cu-In T = 1273 K Activity of indium x In Fig. 15 c) x Cu /x Sn =1:1  Popovic, Bencze  emf method Activity of indium x In Fig. 15 b) x Cu /x Sn =3:1  Popovic, Bencze  emf method Activity of indium x In Fig. 15 d) x Cu /x Sn =1:3  Popovic, Bencze  emf method Activity of indium x In Kang, Castanet

Cu-In-Sn Fig. 16 a) x Cu /x Sn =1:1Fig. 16 b) x Cu /x In =1:1 Fig. 16 c) x Sn /x In =1:1 T = 1073K x Sn H mix /(J*mol -1 ) Mikula et al x Cu H mix /(J*mol -1 ) Mikula et al x In H mix /(J*mol -1 ) Mikula et al

This work was supported by the State Committee for Scientific Research at AGH University Science and Technology, Faculty of Non- Ferrous Metals under fund number and under COST 531 Action no. 112/E-356/SPB/COST/T-08/DWM 571/