CS 61C discussion 11 (1) Jaein Jeong 2002 Draw the data path: ADD or SUB Clk 555 RwRaRb 32 32-bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction.

Slides:



Advertisements
Similar presentations
Pipeline Example: cycle 1 lw R10,9(R1) sub R11,R2, R3 and R12,R4, R5 or R13,R6, R7.
Advertisements

CS152 Lec9.1 CS152 Computer Architecture and Engineering Lecture 9 Designing Single Cycle Control.
John Lazzaro (
EECC550 - Shaaban #1 Lec # 4 Summer Major CPU Design Steps 1Using independent RTN, write the micro- operations required for all target ISA.
361 datapath Computer Architecture Lecture 8: Designing a Single Cycle Datapath.
The Processor: Datapath & Control
CS61C L19 CPU Design : Designing a Single-Cycle CPU (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L26 Single Cycle CPU Datapath II (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L20 Single-Cycle CPU Control (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS152 / Kubiatowicz Lec8.1 9/26/01©UCB Fall 2001 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control September 26, 2001.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2007 © UCB 3.6 TB DVDs? Maybe!  Researchers at Harvard have found a way to use.
Savio Chau Single Cycle Controller Design Last Time: Discussed the Designing of a Single Cycle Datapath Control Datapath Memory Processor (CPU) Input Output.
Processor II CPSC 321 Andreas Klappenecker. Midterm 1 Tuesday, October 5 Thursday, October 7 Advantage: less material Disadvantage: less preparation time.
Ceg3420 control.1 ©UCB, DAP’ 97 CEG3420 Computer Design Lecture 9.2: Designing Single Cycle Control.
EECC550 - Shaaban #1 Lec # 4 Winter CPU Organization Datapath Design: –Capabilities & performance characteristics of principal Functional.
CS 61C L35 Single Cycle CPU Control II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L34 Single Cycle CPU Control I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Lecturer PSOE Dan Garcia
Microprocessor Design
CMPUT Computer Organization and Architecture II1 CMPUT229 - Fall 2003 TopicE: Building a Data Path and a Control Path for a Microprocessor José Nelson.
EECC250 - Shaaban #1 lec #22 Winter The Von-Neumann Computer Model Partitioning of the computing engine into components: –Central Processing.
ECE 232 L13. Control.1 ©UCB, DAP’ 97 ECE 232 Hardware Organization and Design Lecture 13 Control Design
CS152 / Kubiatowicz Lec8.1 2/22/99©UCB Spring 1999 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control Feb 22, 1999 John.
CS 61C L17 Control (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #17: CPU Design II – Control
CS151B Computer Systems Architecture Winter 2002 TuTh 2-4pm BH Instructor: Prof. Jason Cong Lecture 8 Designing a Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L29 Single Cycle CPU Control II (1) Garcia, Fall 2004 © UCB Andrew Schultz inst.eecs.berkeley.edu/~cs61c-tb inst.eecs.berkeley.edu/~cs61c CS61C.
EECC550 - Shaaban #1 Lec # 4 Winter Major CPU Design Steps 1Using independent RTN, write the micro- operations required for all target.
EEM 486: Computer Architecture Lecture 3 Designing a Single Cycle Datapath.
CS61C L27 Single-Cycle CPU Control (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 27 Single-cycle.
CS 61C L16 Datapath (1) A Carle, Summer 2004 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #16 – Datapath Andy.
CS61C L20 Single Cycle Datapath, Control (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
361 control Computer Architecture Lecture 9: Designing Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures.
ECE 232 L12.Datapath.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 12 Datapath.
ELEN 350 Single Cycle Datapath Adapted from the lecture notes of John Kubiatowicz(UCB) and Hank Walker (TAMU)
CS61C L27 Single Cycle CPU Control (1) Garcia, Fall 2006 © UCB Wireless High Definition?  Several companies will be working on a “WirelessHD” standard,
CS3350B Computer Architecture Winter 2015 Lecture 5.6: Single-Cycle CPU: Datapath Control (Part 1) Marc Moreno Maza [Adapted.
Instructor: Sagar Karandikar
Computer Organization CS224 Fall 2012 Lesson 26. Summary of Control Signals addsuborilwswbeqj RegDst ALUSrc MemtoReg RegWrite MemWrite Branch Jump ExtOp.
EEM 486: Computer Architecture Designing Single Cycle Control.
Designing a Single Cycle Datapath In this lecture, slides from lectures 3, 8 and 9 from the course Computer Architecture ECE 201 by Professor Mike Schulte.
EEM 486: Computer Architecture Designing a Single Cycle Datapath.
CPE 442 single-cycle datapath.1 Intro. To Computer Architecture CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath.
CS3350B Computer Architecture Winter 2015 Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) Marc Moreno Maza [Adapted.
1 CS/COE0447 Computer Organization & Assembly Language Chapter 5 Part 2.
Datapath and Control AddressInstruction Memory Write Data Reg Addr Register File ALU Data Memory Address Write Data Read Data PC Read Data Read Data.
Csci 136 Computer Architecture II –Single-Cycle Datapath Xiuzhen Cheng
EEM 486: Computer Architecture Lecture 3 Designing Single Cycle Control.
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single-Cycle CPU Datapath & Control Part 2 Instructors: Krste Asanovic & Vladimir Stojanovic.
CS141-L4-1Tarun Soni, Summer’03 Single Cycle CPU  Previously: built and ALU.  Today: Actually build a CPU Questions on CS140 ? Computer Arithmetic ?
Single Cycle Controller Design
EI209 Chapter 4B.1Haojin Zhu, SJTU 2015 EI 209 Computer Organization Fall 2015 Chapter 4B: The Processor, Control and Multi-cycle Datapath [Adapted from.
CS 110 Computer Architecture Lecture 11: Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger School of Information.
Computer Architecture Lecture 6.  Our implementation of the MIPS is simplified memory-reference instructions: lw, sw arithmetic-logical instructions:
Access the Instruction from Memory
MIPS Microarchitecture Single-Cycle Processor Control
Single Cycle CPU - Control
Computer Architecture
(Chapter 5: Hennessy and Patterson) Winter Quarter 1998 Chris Myers
CS/COE0447 Computer Organization & Assembly Language
Exhausted TA Ben Sussman
Lecturer PSOE Dan Garcia
Inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 20 CPU Design: Control II & Pipelining I TA Noah Johnson Greet class.
CSCI206 - Computer Organization & Programming
CSE378 Midterm Review Moore’s Law -- What are the two versions?
COSC 2021: Computer Organization Instructor: Dr. Amir Asif
Instructors: Randy H. Katz David A. Patterson
Control Unit (single cycle implementation)
COMS 361 Computer Organization
Presentation transcript:

CS 61C discussion 11 (1) Jaein Jeong 2002 Draw the data path: ADD or SUB Clk 555 RwRaRb bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction Imm16RdRtRs = Adder PC Clk 00 4 PC Ext Adr Inst Memory

CS 61C discussion 11 (2) Jaein Jeong 2002 Draw the data path: ORI Clk 555 RwRaRb bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction Imm16RdRtRs = Adder PC Clk 00 4 PC Ext Adr Inst Memory

CS 61C discussion 11 (3) Jaein Jeong 2002 Draw the data path: Load word Clk 555 RwRaRb bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction Imm16RdRtRs = Adder PC Clk 00 4 PC Ext Adr Inst Memory

CS 61C discussion 11 (4) Jaein Jeong 2002 Draw the data path: Store word Clk 555 RwRaRb bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction Imm16RdRtRs = Adder PC Clk 00 4 PC Ext Adr Inst Memory

CS 61C discussion 11 (5) Jaein Jeong 2002 Draw the data path: Branch equal Clk 555 RwRaRb bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction Imm16RdRtRs = Adder PC Clk 00 4 PC Ext Adr Inst Memory Mux

CS 61C discussion 11 (6) Jaein Jeong 2002 A Summary of the Control Signals oprsrtrdshamtfunct oprsrt immediate R-type I-type add, sub ori, lw, sw, beq addsuborilwswbeq RegDst ALUSrc MemtoReg RegWrite MemWrite nPCsel ALUctr x x func op Appendix A See We Don’t Care :-) ExtOpxx011x ALUctr AddSubtractOrAdd Subtract ALUctr OR: 001 ADD: 010 SUB: xx

CS 61C discussion 11 (7) Jaein Jeong 2002 Writing controls in Boolean formula °Express following variables in Boolean formula of OPCode and Func Add = OP[5]’*OP[4]’*OP[3]’*OP[2]’*OP[1]’*OP[0]’ *F[5] *F[4]’ *F[3]’ *F[2]’ *F[1]’ *F[0]’ Sub = OP[5]’*OP[4]’*OP[3]’*OP[2]’*OP[1]’*OP[0]’ *F[5] *F[4]’ *F[3]’ *F[2]’ *F[1] *F[0]’ Ori = OP[5]’*OP[4]’*OP[3]*OP[2]*OP[1]’*OP[0]’ Lw = OP[5]*OP[4]’*OP[3]’*OP[2]’*OP[1]*OP[0] Sw = OP[5]*OP[4]’*OP[3]*OP[2]’*OP[1]*OP[0] Beq = OP[5]’*OP[4]’*OP[3]’*OP[2]*OP[1]’*OP[0]’

CS 61C discussion 11 (8) Jaein Jeong 2002 Writing controls in Boolean formula °Express following variables in Boolean formula of Add, Sub, Ori, Lw, Sw, Beq, OPCode, or Func RegDst = Add + Sub ALUSrc = Ori + Lw + Sw MemtoReg = Lw RegWrite = Add + Sub + Ori + Lw MemWrite = Sw nPCsel = Beq ExtOp = Lw + Sw ALUctr = Sub + Beq ALUctr = Add + Sub + Lw + Sw + Beq ALUctr = Ori