Genetic Growth Curve Models Practica Boulder, March 2008 Irene Rebollo & Gitta Lubke & Mike Neale VU Amsterdam NL & Notre Dame, US & VCU, US.

Slides:



Advertisements
Similar presentations
Bivariate analysis HGEN619 class 2007.
Advertisements

Fitting Bivariate Models October 21, 2014 Elizabeth Prom-Wormley & Hermine Maes
Elizabeth Prom-Wormley & Hermine Maes
ACE estimates under different sample sizes Benjamin Neale Michael Neale Boulder 2006.
Univariate Model Fitting
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Extended sibships Danielle Posthuma Kate Morley Files: \\danielle\ExtSibs.
Multiple raters March 7 th, 2002 Boulder, Colorado John Hewitt.
Longitudinal Modeling Nathan, Lindon & Mike LongitudinalTwinAnalysis_MatrixRawCon.R GenEpiHelperFunctions.R jepq.txt.
Heterogeneity Hermine Maes TC19 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
(Re)introduction to Mx. Starting at the beginning Data preparation Mx expects 1 line per case/family Almost limitless number of families and variables.
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
Genetic Dominance in Extended Pedigrees: Boulder, March 2008 Irene Rebollo Biological Psychology Department, Vrije Universiteit Netherlands Twin Register.
Univariate Analysis Hermine Maes TC19 March 2006.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Raw data analysis S. Purcell & M. C. Neale Twin Workshop, IBG Colorado, March 2002.
Continuously moderated effects of A,C, and E in the twin design Conor V Dolan & Sanja Franić (BioPsy VU) Boulder Twin Workshop March 4, 2014 Based on PPTs.
Institute of Psychiatry King’s College London, UK
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Extending Simplex model to model Ph  E transmission JANNEKE m. de kort & C.V. DolAn Contact:
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Regression. Population Covariance and Correlation.
Univariate modeling Sarah Medland. Starting at the beginning… Data preparation – The algebra style used in Mx expects 1 line per case/family – (Almost)
Practical SCRIPT: F:\meike\2010\Multi_prac\MultivariateTwinAnalysis_MatrixRaw.r DATA: DHBQ_bs.dat.
Longitudinal Modeling Nathan Gillespie & Dorret Boomsma \\nathan\2008\Longitudinal neuro_f_chol.mx neuro_f_simplex.mx jepq6.dat.
Power and Sample Size Boulder 2004 Benjamin Neale Shaun Purcell.
Gene-Environment Interaction & Correlation Danielle Dick & Danielle Posthuma Leuven 2008.
Combined Linkage and Association in Mx Hermine Maes Kate Morley Dorret Boomsma Nick Martin Meike Bartels Boulder 2009.
Environmental Modeling Basic Testing Methods - Statistics III.
Univariate Analysis Hermine Maes TC21 March 2008.
Longitudinal Modeling Nathan & Lindon Template_Developmental_Twin_Continuous_Matrix.R Template_Developmental_Twin_Ordinal_Matrix.R jepq.txt GenEpiHelperFunctions.R.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
Continuous heterogeneity Danielle Dick & Sarah Medland Boulder Twin Workshop March 2006.
Introduction to Genetic Theory
Welcome  Log on using the username and password you received at registration  Copy the folder: F:/sarah/mon-morning To your H drive.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
Developmental Models/ Longitudinal Data Analysis Danielle Dick & Nathan Gillespie Boulder, March 2006.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Slides: faculty/sanja/2016/Moderating_covariances_IQ_SES/Slides/Moderating_covariances_practical.
Extended Pedigrees HGEN619 class 2007.
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Introduction to Multivariate Genetic Analysis
Univariate Analysis HGEN619 class 2006.
MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience
Path Analysis Danielle Dick Boulder 2008
Can resemblance (e.g. correlations) between sib pairs, or DZ twins, be modeled as a function of DNA marker sharing at a particular chromosomal location?
Multiple Regression A curvilinear relationship between one variable and the values of two or more other independent variables. Y = intercept + (slope1.
GxE and GxG interactions
Pak Sham & Shaun Purcell Twin Workshop, March 2002
(Re)introduction to Mx Sarah Medland
Longitudinal Modeling
\nathan\RaterBias.
Lucía Colodro Conde Sarah Medland & Matt Keller
MANOVA Control of experimentwise error rate (problem of multiple tests). Detection of multivariate vs. univariate differences among groups (multivariate.
ACE estimates under different sample sizes
Multivariate Genetic Analysis: Introduction
Rater Bias & Sibling Interaction Meike Bartels Boulder 2004
Presentation transcript:

Genetic Growth Curve Models Practica Boulder, March 2008 Irene Rebollo & Gitta Lubke & Mike Neale VU Amsterdam NL & Notre Dame, US & VCU, US

Agg91 1 Agg95 1 Agg97 1 Agg00 1 i s Agg91 2 Agg95 2 Agg97 2 Agg00 2 i s EiEi CiCi AiAi 111 aiai cici eiei EsEs CsCs AsAs 111 eses cscs asas e is c is a is AiAi CiCi EiEi AsAs CsEsEs eiei cici aiai e is c is a is asas cscs eses 0.5/1 1 1 Genetic Growth Curve Model

Agg91 2 Agg95 2 Agg97 2 Agg00 2 i 1111 ViVi s VsVs r is 0000 αiαi αsαs e1e1 e2e2 e3e3 e4e4 1. Phenotypic Growth Curve Model

1. Phenotypic Growth Curve Model: Matrices Agg91 2 Agg95 2 Agg97 2 Agg00 2 i 1111 ViVi s VsVs r is 0000 αiαi αsαs e1e1 e2e2 e3e3 e4e4 phenLingrow_lib08.mx RUN

1. Phenotypic Growth Curve Model: Matrices Agg91 2 Agg95 2 Agg97 2 Agg00 2 i 1111 ViVi s VsVs r is 0000 αiαi αsαs e1e1 e2e2 e3e3 e4e4 COVARIANCES MEANS

1. Phenotypic Growth Curve Model: Run! Agg91 2 Agg95 2 Agg97 2 Agg00 2 i s FIT: Δ χ 2 (5)= 28.78, p<.01 RMSEA =.0364 POSSIBLE SUBMODELS: 1.Sig. Variation on Slope? 2.Sig i-s covariance? 3.Age effect = across surveys? 4.Significant change across time (α s )?  All significant! phenLingrow_lib08.mx

2. Twin Correlations on the Growth Curve Model i1i1 s1s1 i2i2 s2s2 i1i1 vivi s1s1 r is vsvs i2i2 vivi s2s2 vsvs Agg91 1 Agg95 1 Agg97 1 Agg00 1 i s Vi Vs r is Agg91 2 Agg95 2 Agg97 2 Agg00 2 is VsVi r is (Co)Variance matrix between Intercept & Slope: 1. Phenotypic, within twin co(variances)

2. Twin Correlations on the Growth Curve Model i1i1 s1s1 i2i2 s2s2 i1i1 vivi s1s1 r is vsvs i2i2 r ii vivi s2s2 r ss r is vsvs Agg91 1 Agg95 1 Agg97 1 Agg00 1 i s Vi Vs r is Agg91 2 Agg95 2 Agg97 2 Agg00 2 is VsVi r is (Co)Variance matrix between Intercept & Slope: 2. Cross twin-within trait: i 1 -i 2 & s 1 -s 2 i1i1 s1s1 i2i2 s2s2 i1i1 vivi s1s1 r is vsvs i2i2 r ii vivi s2s2 r ss r is vsvs MZDZ

2. Twin Correlations on the Growth Curve Model i1i1 s1s1 i2i2 s2s2 i1i1 vivi s1s1 r is vsvs i2i2 r ii r si vivi s2s2 r is r ss r is vsvs Agg91 1 Agg95 1 Agg97 1 Agg00 1 i s Vi Vs r is Agg91 2 Agg95 2 Agg97 2 Agg00 2 is VsVi r is (Co)Variance matrix between Intercept & Slope: 3. Cross twin-cross trait: i 1 -s 2 & s 1 -i 2 i1i1 s1s1 i2i2 s2s2 i1i1 vivi s1s1 r is vsvs i2i2 r ii r si vivi s2s2 r is r ss r is vsvs MZDZ

2. Twin Correlations on the Growth Curve Model TWLingrow_lib08.mx RUN Agg91 1 Agg95 1 Agg97 1 Agg00 1 i s Vi Vs Agg91 2 Agg95 2 Agg97 2 Agg00 2 is VsVi

2. Twin Correlations: Matrices (for covariance structure) COMMON MATRICES Uncorrelated Residuals ZYGOSITY SPECIFIC Residuals Tw1 Residuals Tw2 MZ Sym DZ Sym COVARIANCE + ; COVARIANCE + ;

2. Twin Correlations: Script & Output MZ Sym DZ Sym CORRELATIONS FOR MODEL SELECTION

2. Twin Correlations: Script & Output MZ Sym DZ Sym COVARIANCES FOR STARTING VALUES

Agg91 1 Agg95 1 Agg97 1 Agg00 1 i s Agg91 2 Agg95 2 Agg97 2 Agg00 2 i s EiEi CiCi AiAi 111 aiai cici eiei EsEs CsCs AsAs 111 eses cscs asas e is c is a is AiAi CiCi EiEi AsAs CsEsEs eiei cici aiai e is c is a is asas cscs eses 0.5/ Genetic Growth Curve Model

Lingrow_lib08.mx RUN 3. Genetic Growth Curve Model

3. Genetic Growth Curve Model: Matrices M = A+C+E | A+C _ A+C | A+C+E; MZDZ S = A+C+E | _ | A+C+E; COVARIANCE + ;COVARIANCE + ;

3. Genetic Growth Curve Model: Script & Output In Matrix K: %V i %V s %S is A680 C E Exercise: Use the option Multiple to Test for genetic effects on: -Covariance i-s -Variance I -Variance S

3. Genetic Growth Curve Model: Model Fitting Results MODEL-2LLDFvsχ2χ2 dfp FULL a si = a i = a s =