PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10) These slides at: Lecture 16
Syllabus 1.Basics of quantum mechanics (QM) Postulate, operators, eigenvalues & eigenfunctions, orthogonality & completeness, time-dependent Schrödinger equation, probabilistic interpretation, compatibility of observables, the uncertainty principle. 2.1-D QM Bound states, potential barriers, tunnelling phenomena. 3.Orbital angular momentum Commutation relations, eigenvalues of L z and L 2, explicit forms of L z and L 2 in spherical polar coordinates, spherical harmonics Y l,m. 4.Spin Noncommutativity of spin operators, ladder operators, Dirac notation, Pauli spin matrices, the Stern-Gerlach experiment. 5.Addition of angular momentum Total angular momentum operators, eigenvalues and eigenfunctions of J z and J 2. 6.The hydrogen atom revisited Spin-orbit coupling, fine structure, Zeeman effect. 7.Perturbation theory First-order perturbation theory for energy levels. 8.Conceptual problems The EPR paradox, Bell’s inequalities.
4. Spin 4.1 Commutators, ladder operators, eigenfunctions, eigenvalues 4.2 Dirac notation (simple shorthand – useful for “spin” space) 4.3 Matrix representations in QM; Pauli spin matrices 4.4 Measurement of angular momentum components: the Stern-Gerlach apparatus
Recap: 4.3 Matrix representations in QM We can describe any function as a linear combination of our chosen set of eigenfunctions (our “basis”) Substitute in the eigenvalue equation for a general operator: Gives:
Recap: 4.3 Matrix representations in QM We can describe any function as a linear combination of our chosen set of eigenfunctions (our “basis”) Substitute in the eigenvalue equation for a general operator: Gives: Multiply from left and integrate: (We use ) And find: Exactly the rule for multiplying matrices! Equation (1)
Pauli Spin Matrices: Matix representations of S x, S y, S z S x = ½ħ σ x ; S y = ½ħ σ y ; S z = ½ħ σ z
Matrix representation: Eigenvectors of S x, S y, S z Eigenfunctions of spin-1/2 operators Example: description of spin=1 polarised along the x-axis In Dirac notation: is
4.4 Measurement of a spin component Magnetic moments (a) due to orbital angular momentum r e Electron in orbit produces a magnetic field (like bar magnet) and therefore has a magnetic dipole moment: μ l = g l l μ B μ B = eħ/2m e (the Bohr magneton) g l = -1 (gyromagnetic ratio or g-factor) l= 1, 2, 3… μ l = g l l μ B