Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
1 S. Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia S. Charfi-Kaddour LPMC, Faculté des Sciences de Tunis, Tunisia M. Héritier.
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Microscopic structure and properties of superconductivity on the density wave background P. D. Grigoriev L. D. Landau Institute for Theoretical Physics,
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Electronic structure of La2-xSrxCuO4 calculated by the
Superconductivity in Zigzag CuO Chains
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Quantum charge fluctuation in a superconducting grain Manuel Houzet SPSMS, CEA Grenoble In collaboration with L. Glazman (University of Minnesota) D. Pesin.
Fermi-Liquid description of spin-charge separation & application to cuprates T.K. Ng (HKUST) Also: Ching Kit Chan & Wai Tak Tse (HKUST)
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides,
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
A new scenario for the metal- Mott insulator transition in 2D Why 2D is so special ? S. Sorella Coll. F. Becca, M. Capello, S. Yunoki Sherbrook 8 July.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universit ä t Stuttgart Outline.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Symmetry breaking in the Pseudogap state and Fluctuations about it Schematic Universal phase diagram of high-T c superconductors MarginalFermi-liquid Fermi.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Zheng-Yu Weng IAS, Tsinghua University
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Insulating Spin Liquid in the 2D Lightly Doped Hubbard Model
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Eliashberg Function in ARPES measurements Yu He Cuperates Meeting Dec. 3, 2010.
R OLE OF D ISORDER IN S UPERCONDUCTING T RANSITION Sudhansu S. Mandal IACS, Kolkata HRI 1.
Mott Transition and Superconductivity in Two-dimensional
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
SUPERCONDUCTIVITY IN SYSTEMS WITH STRONG CORRELATIONS
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational.
Correlation in graphene and graphite: electrons and phonons C. Attaccalite, M. Lazzeri, L. Wirtz, F. Mauri, and A. Rubio.
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
R. Nourafkan, G. Kotliar, A.-M.S. Tremblay
Kondo Effect Ljubljana, Author: Lara Ulčakar
ARPES studies of cuprates
Phase diagram of FeSe by nematic ultrafast dynamics
BEC-BCS cross-over in the exciton gas
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Presentation transcript:

Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur LPMC, Faculté des Sciences de Tunis, Tunis, Tunisia M. Héritier, LPS (Université Paris-Sud, Orsay)

Outline Normal state properties of  -(ET) 2 X Spin fluctuations Self-energy correction Spectral function Density of states Comparison with experiments Superconducting pairing Phase segregation

Phase diagram 13 K 22 K 100 K  30 K AF SC I Metallic state SC D 8 -Br H 8 -Br Cu(NCS) 2 I3I3 H 8 -Cl T* Pressure Fermi liquid Strange Metal T  -(BEDT-TTF) 2 Cu[N(CN) 2 ]Br Tc= 11.5 K  -(BEDT-TTF) 2 Cu(NCS) 2 Tc= 9.5 K Normal state anomalies : Pseudogap ? What are the spin fluctuations effects on quasi-particles (q-p)?

Spin-lattice relaxation rate Metal : 1/ T 1 T = constant This abnormal behaviour desappears with pressure [A.Kawamoto 95], [K.Miyagawa 95], [Y.Nakazawa 95] [K.Kanoda 95] Anomalous behaviour around 60 K

Magnetic susceptibility Metal :  T) = constant Pauli susceptibility Unusual behaviour at low temperature Of  Pseudogap effect [A.Kawamoto 95], [K.Miyagawa 95], [Y.Nakazawa 95] [K.Kanoda 95]

Photo-emission : Fermi liquid ? Pt Fermi liquid : Inflexion point Absence of Fermi edge [R.Liu, 1995].

Fermi surface Magnetotransport measurements, J. Caulfield et al. (1994) Best nesting vector Band 1Band 2

Hubbard Hamiltonian weak coupling U : intra-band on-site coulomb repulsion U’ : inter-band on-site coulomb repulsion U = U’ B1B1 B2B2

Korringa law not satisfied : a spin fluctuation effect quand t 1 /t 2 =0.4 t 1 /t 2 =0.5 t 1 /t 2 =0.7 U=0.3 e V P=1bar, P=1.5kbar, P=3kbar et P=4kbar Our calculation ĸ-(ET) 2 Cu[N(CN) 2 ]Br [H. Mayaffre94] R. Louati, Phys. Rev. B 2000 P=4kbar P=1bar

Bandwidth effect on 1/T 1 T : The pressure acts on the bandwidth and also on the nesting (t 1 /t 2 ) Louati et al., Phys. Rev. B 62, 5957 (2000) T* T* increases with pressure

Self-energy corrections Calculation of the Green functions of the antiferromagnetically correlated electron system. GG0G0 G0G0  + Self-energy within RPA approximation (Q) k’+Q k’-Qk’  U U  RPA k’k’ k’+Q … = U U U = = G0G0

Spin fluctuations ε k+Q = - ε k χ RPA (Q,ω) is maximum for a Q vector correcponding to the : best nesting k belongs to the Fermi surface

qzqz qxqx Magnetic susceptibility (bande 1) qzqz best nesting [Louati et al, Phys. Rev B (2000)]

qzqz qxqx Magnetic susceptibility (bande 2) qzqz qxqx [Louati]

Quasi-particules Imaginary part of the self-energy : Inverse of q-p life time kk  A(k,  U = 0 A(k,   EkEk U > 0 E k real part of the green function pole : q –p energy

Pseudogap formation for C and B points There is a critical value of U for which the pseudogap opens No pseudogap at A; different behaviours at different points of the FS ; C is a hot spot Self energy calculation :hot spots at best nesting points C point B 1 point A point C B A

Imaginary part of the self-energy Anisotropic behaviour of the FS Life time in A higher than in C. C A

U    The quasi-particule has a shorter life time C A B2B2 Point C Point B 2 Imaginary part of the self-energy

Point C C C is more affected by both band fluctuations C is a affected by e-e scattering The quasi-particule is vanishing Spin fluctuations of the band 1Spin fluctuations of the band 2 Spin fluctuations of both bands t 1 / t 2 =0.4

Density of states

Density of states calculation : Important pseudogap effect 30% reduction of the density of states near the Fermi level Band 2 T=50 K EFEF

Comparison with experiments 30% reduction of the magnetic susceptibility at 50 K in agreement with NMR experimental data of the susceptibility : pseudogap effect The results fit well the 1/T1T temperature dependence Good agreement with optical measurements (Dressel 2008) Good agreement with the estimation of the life time from magneto-transport data (J. Singleton PRL, 2007) Possible explanation of absence of quasi-particles in parts of the FS.

Superconducting pairing due to inter-band interaction Pairing of electrons from the band 2 mediated by spin fluctuations from the band 1 : d-wave paring

Supraconductivité non homogène : Diagrammes de phases bar k-(ET)2N(CN)2Cl S. Lefebvre et al., Phys. Rev. Lett. 85, 5420 (2000). Yoneyama et al., J. Phys. Soc. Jpn. (2004). k-(h8-ET) 1-x (h8-ET) x ] 2 Cu[N(CN)2]Br Phase segregation Hydrostatic pressure Chemical pressure

Su et al. (1998) Tc versus disorder Cooling rate Irradiation J. Analytis et al. PRL (2007)

The Model J0J0 J1J1 J2J2 SC Josephson couplings Insulator fluctuations Time dependent Ginzburg-Landau equation+ critical superconducting fluctuations

Our results κ(BEDT-TTF)2Cu(SCN)2

Conclusion Interpretation of the normal state properties by a spin fluctuation effect Mechanism for superconducting coupling Explanation of the coexistence region as a segregation phase ( Josephson coupling)