INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, 2004 Lecture Slides for.

Slides:



Advertisements
Similar presentations
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) ETHEM ALPAYDIN © The MIT Press, 2010
Advertisements

INTRODUCTION TO Machine Learning 2nd Edition
Notes Sample vs distribution “m” vs “µ” and “s” vs “σ” Bias/Variance Bias: Measures how much the learnt model is wrong disregarding noise Variance: Measures.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO MACHINE LEARNING Bayesian Estimation.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning 3rd Edition
INTRODUCTION TO Machine Learning 3rd Edition
Lecture 3 Nonparametric density estimation and classification
Instance Based Learning
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
MACHINE LEARNING 9. Nonparametric Methods. Introduction Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 
Lecture Notes for CMPUT 466/551 Nilanjan Ray
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Pattern Recognition. Introduction. Definitions.. Recognition process. Recognition process relates input signal to the stored concepts about the object.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
CHAPTER 4: Parametric Methods. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation X = {
CHAPTER 4: Parametric Methods. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation Given.
MACHINE LEARNING 6. Multivariate Methods 1. Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Motivating Example  Loan.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning 3rd Edition
Binary Variables (1) Coin flipping: heads=1, tails=0 Bernoulli Distribution.
CHAPTER 4: Parametric Methods. Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 Parametric Estimation Given.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
COMMON EVALUATION FINAL PROJECT Vira Oleksyuk ECE 8110: Introduction to machine Learning and Pattern Recognition.
CHAPTER 7: Clustering Eick: K-Means and EM (modified Alpaydin transparencies and new transparencies added) Last updated: February 25, 2014.
Image Modeling & Segmentation Aly Farag and Asem Ali Lecture #2.
MACHINE LEARNING 8. Clustering. Motivation Based on E ALPAYDIN 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2  Classification problem:
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN Modified by Prof. Carolina Ruiz © The MIT Press, 2014 for CS539 Machine Learning at WPI
MACHINE LEARNING 10 Decision Trees. Motivation  Parametric Estimation  Assume model for class probability or regression  Estimate parameters from all.
INTRODUCTION TO Machine Learning 3rd Edition
Jakob Verbeek December 11, 2009
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
Nonparametric Density Estimation Riu Baring CIS 8526 Machine Learning Temple University Fall 2007 Christopher M. Bishop, Pattern Recognition and Machine.
Chapter 13 (Prototype Methods and Nearest-Neighbors )
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
CHAPTER 10: Logistic Regression. Binary classification Two classes Y = {0,1} Goal is to learn how to correctly classify the input into one of these two.
Machine Learning 5. Parametric Methods.
Machine Learning ICS 178 Instructor: Max Welling Supervised Learning.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
CHAPTER 8: Nonparametric Methods Alpaydin transparencies significantly modified, extended and changed by Ch. Eick Last updated: March 4, 2011.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Lecture 7 Spring 2010 Dr. Jianjun Hu CSCE883 Machine Learning.
1 C.A.L. Bailer-Jones. Machine Learning. Data exploration and dimensionality reduction Machine learning, pattern recognition and statistical data modelling.
INTRODUCTION TO Machine Learning 3rd Edition
Ch8: Nonparametric Methods
Non-Parametric Density Functions
INTRODUCTION TO Machine Learning
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Instance Based Learning
INTRODUCTION TO Machine Learning
INTRODUCTION TO Machine Learning
INTRODUCTION TO Machine Learning
INTRODUCTION TO Machine Learning 3rd Edition
Presentation transcript:

INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for

CHAPTER 8: Nonparametric Methods

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 3 Nonparametric Estimation Parametric (single global model), semiparametric (small number of local models) Nonparametric: Similar inputs have similar outputs Functions (pdf, discriminant, regression) change smoothly Keep the training data;“let the data speak for itself” Given x, find a small number of closest training instances and interpolate from these Aka lazy/memory-based/case-based/instance- based learning

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 4 Density Estimation Given the training set X={x t } t drawn iid from p(x) Divide data into bins of size h Histogram: Naive estimator: or

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 5

6

7 Kernel Estimator Kernel function, e.g., Gaussian kernel: Kernel estimator (Parzen windows)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 8

9 k-Nearest Neighbor Estimator Instead of fixing bin width h and counting the number of instances, fix the instances (neighbors) k and check bin width d k (x), distance to kth closest instance to x

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 10

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 11 Multivariate Data Kernel density estimator Multivariate Gaussian kernel spheric ellipsoid

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 12 Nonparametric Classification Estimate p(x|C i ) and use Bayes’ rule Kernel estimator k-NN estimator

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 13 Condensed Nearest Neighbor Time/space complexity of k-NN is O (N) Find a subset Z of X that is small and is accurate in classifying X (Hart, 1968)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 14 Condensed Nearest Neighbor Incremental algorithm: Add instance if needed

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 15 Nonparametric Regression Aka smoothing models Regressogram

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 16

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 17

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 18 Running mean smoother Running line smoother Running Mean/Kernel Smoother Kernel smoother where K( ) is Gaussian Additive models (Hastie and Tibshirani, 1990)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 19

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 20

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 21

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 22 How to Choose k or h? When k or h is small, single instances matter; bias is small, variance is large (undersmoothing): High complexity As k or h increases, we average over more instances and variance decreases but bias increases (oversmoothing): Low complexity Cross-validation is used to finetune k or h.