Pariz-Karimpour Feb Chapter 3 Reference: Switched linear systems control and design Zhendong Sun, Shuzhi S. Ge
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
Pariz-Karimpour Feb
5 Introduction
6 Introduction
7 ?Introduction
8 Introduction Example
Pariz-Karimpour Feb LetIntroduction
Pariz-Karimpour Feb Introduction
Pariz-Karimpour Feb This lecture provide: Basic observation on the ability and limitation of switching design Analyze and design of some switching for Stability and robustness Introduction
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
Pariz-Karimpour Feb
Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results
Pariz-Karimpour Feb Algebraic Criteria
Pariz-Karimpour Feb Algebraic Criteria
Pariz-Karimpour Feb Algebraic Criteria
Pariz-Karimpour Feb Example Algebraic Criteria
Pariz-Karimpour Feb Algebraic Criteria
Pariz-Karimpour Feb Example Algebraic Criteria
Pariz-Karimpour Feb Algebraic Criteria
Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results
Pariz-Karimpour Feb Does this equivalence still hold for switched linear systems To establish the equivalence, we need the concept of switched convergence Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb R2R2... RlRl R1R1 RiRi Equivalence of the Stabilization Notions
Pariz-Karimpour Feb R2R2... RlRl R1R1 RiRi Equivalence of the Stabilization Notions Since
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results
Pariz-Karimpour Feb Periodic and Synchronous Switchings
Pariz-Karimpour Feb Periodic and Synchronous Switchings
Pariz-Karimpour Feb Periodic and Synchronous Switchings
Pariz-Karimpour Feb Periodic and Synchronous Switchings
Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results
Pariz-Karimpour Feb Special Systems
Pariz-Karimpour Feb Special Systems
Pariz-Karimpour Feb Special Systems
Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results
Pariz-Karimpour Feb Robustness Issues
Pariz-Karimpour Feb Robustness Issues
Pariz-Karimpour Feb Robustness Issues Proof of theorem 3.15 (continue)
Pariz-Karimpour Feb Robustness Issues Proof of theorem 3.15 (continue)
Pariz-Karimpour Feb Robustness Issues
Pariz-Karimpour Feb Robustness Issues
Pariz-Karimpour Feb Robustness Issues
Pariz-Karimpour Feb Proof of theorem 3.19 (continue) Robustness Issues
Pariz-Karimpour Feb Proof: By theorem 3.19 we have Robustness Issues
Pariz-Karimpour Feb Robustness Issues
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
Pariz-Karimpour Feb
Pariz-Karimpour Feb Periodic Switching
Pariz-Karimpour Feb m …… 12m 12m Periodic Switching
Pariz-Karimpour Feb Define the fundamental matrix as: Periodic Switching
Pariz-Karimpour Feb Periodic Switching
Pariz-Karimpour Feb m …… 12m 12m = 1 = 2 Periodic Switching
Pariz-Karimpour Feb m …… 12m 12m = 1 = 2 Periodic Switching
Pariz-Karimpour Feb Periodic Switching
Pariz-Karimpour Feb i) The system state is bounded if the perturbation is bounded ii) The system state is bounded and convergent if the perturbation is bounded and convergent iii) The system state is exponentially convergent if the perturbation is exponentially convergent Periodic Switching
Pariz-Karimpour Feb i) Periodic Switching
Pariz-Karimpour Feb ii) Periodic Switching
Pariz-Karimpour Feb iii) Periodic Switching
Pariz-Karimpour Feb Periodic Switching
Pariz-Karimpour Feb Periodic Switching
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
Pariz-Karimpour Feb
Pariz-Karimpour Feb State-space-partition-based Switching A Modified Switching Law Observer-based Switching State-feedback Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb Switching strategy State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb
Pariz-Karimpour Feb function y=myfun2(x) if x(1)~=x(2);y=1; else y=0; end function y=myfun1(w) if w==1; y=[1;0];end if w==2; y=[0;1];end end function y=myfun(w) x=w(1:2);sigk=w(3); A1=[-2 0;0 1];A2=[1 0;0 -2];x0=[1;-1]; P=0.5*eye(2); Q(1).s=A1'*P+P*A1;Q(2).s=A2'*P+P*A2;r(1)=0.4;r(2)=0.4; if (x'*Q(sigk).s*x) > (-r(sigk)*x'*x) [c,y]=min([x'*Q(1).s*x, x'*Q(2).s*x]); else y=sigk; end State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching
Pariz-Karimpour Feb State-space-partition-based Switching A Modified Switching Law Observer-based Switching State-feedback Switching
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb Modified Switching strategy A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb A Modified Switching Law
Pariz-Karimpour Feb State-space-partition-based Switching A Modified Switching Law Observer-based Switching State-feedback Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb
Pariz-Karimpour Feb
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Check the assumption 3.2 for the system 2- Repeat the system simulatrion by 3- Choose suitable L 1 and L 2 and repeat the simulation. 4- Examine the system for y=x 1 for the first system and y=x 2 for the second one. Exercises: 5- According to exercise 4 derive another condition for observer base switching.
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
Pariz-Karimpour Feb
Pariz-Karimpour Feb Combined Switching
Pariz-Karimpour Feb Periodic switching 0 12m …… 12m 12m Combined Switching
Pariz-Karimpour Feb State feedback switching Combined Switching
Pariz-Karimpour Feb Combined Switching
Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb tktk t k+2 t k+1 Switching Strategy Description
Pariz-Karimpour Feb Proof: Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description
Pariz-Karimpour Feb
Pariz-Karimpour Feb By student (#2) Switching Strategy Description
Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching
Pariz-Karimpour Feb Proof: By one of the student (#3) Robustness Properties
Pariz-Karimpour Feb By student (#3) Robustness Properties
Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Observer-based Switching
Pariz-Karimpour Feb Proof: By one of the student (#4) Observer-based Switching
Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching
Pariz-Karimpour Feb Extensions
Pariz-Karimpour Feb Extensions
Pariz-Karimpour Feb Extensions
Pariz-Karimpour Feb Extensions
Pariz-Karimpour Feb Let
Pariz-Karimpour Feb Let t0t0 t4t4 t1t1 t2t2 t3t3 Extensions
Pariz-Karimpour Feb Extensions
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems
Pariz-Karimpour Feb
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Numerical Examples
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems Summary
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.1. Introduction
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria Equivalence of the Stabilization Notions
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switching
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switching Special Systems Robustness Issues
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.3. Periodic Switching 0 12m …… 12m 12m
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.3. Periodic Switching
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Switching strategy
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Modified Switching strategy
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Observer Based Switching strategy
Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching (Robustness Property)
Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching (Extension)
Pariz-Karimpour Feb