Correlation of PN morphology and nebular parameters Arturo Manchado Instituto de Astrofísica de Canarias.

Slides:



Advertisements
Similar presentations
Physical conditions of the shocked regions in collimated outflows of planetary nebulae Angels Riera (UPC)
Advertisements

X-Ray Emission from Planetary Nebulae and Their Central Stars: A Status Report Joel Kastner Rochester Institute of Technology w/ help from lots of other.
14 May 2004ALMA Workshop UMD Margaret Meixner (STScI) Stars and Their Evolution: as viewed by ALMA Margaret Meixner STScI.
A tribute to Donald E. Osterbrock, 1924–2007 A tribute to Donald E. Osterbrock, 1924–2007 PLANETARY NEBULA IMAGE CATALOGUE.
PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW, POLAND PLANETARY NEBULAE AS ASTRONOMICAL TOOLS GDAŃSK,
The Nature and Origin of Molecular Knots in Planetary Nebulae Sarah Eyermann – U. of Missouri Angela Speck – U. of Missouri Margaret Meixner – STScI Peter.
The morphology and kinematics of planetary nebulae: a tribute to Hugo Schwarz Romano L.M. Corradi Isaac Newton Group of Telescopes.
Abundances and relation to PN morphological features Antonio Mampaso IAC, Tenerife. Spain.
CPD : the dust chemistry – binarity connection Orsola De Marco American Museum of Natural History New York.
Inflating Fat Bubbles in Clusters of Galaxies by Slow Wide Jets Assaf Sternberg (did the work) Noam Soker (speaker today) Technion, Israel July 2008.
Hot Gas in Planetary Nebulae You-Hua Chu Robert A. Gruendl Martín A. Guerrero Univ. of Illinois.
DISCUSSION: Symbiotic nebulae and the link with PNe
Hen : The Garden Sprinkler Nebula Angels Riera Universitat Politècnica de Catalunya.
M ORPHOLOGY OF G ALACTIC O PEN C LUSTERS Thirty six open clusters were selected from the 2MASS database on the basis of the latest open cluster catalogue.
Binarity & Symbiotics Hugo E. Schwarz. Cerro Tololo Inter-American Observatory, NAOA/AURA.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Hen 2-90: The Planetary Nebula which looks like a YSO Raghvendra Sahai Jet Propulsion Laboratory, Caltech 1.Discovered by Henize (1967), listed in Perek-Kohoutek.
Distances to PNe using angular expansion parallax Lizette Guzman-Ramirez (JBCA, University of Manchester) Yolanda Gomez and Laurent Loinard (CRyA, UNAM,
PAIRS OF BUBBLES IN PLANETARY NEBULAE AND CLUSTERS OF GALAXIES Noam Soker Dept. of Physics, Technion and Dept. of Physics, Oranim ISRAEL.
Multiple, Coeval and Hubble-like bipolar outflows Romano L.M. Corradi Isaac Newton Group of Telescopes La Palma, Spain.
X-ray Emission from PNe Martín A. Guerrero You-Hua Chu Robert A. Gruendl Univ. of Illinois APN III, Mt Rainier, 7/30/03.
On the velocity structure in clumpy planetary nebulae Café de grano o soluble: Micro-estructuras en nebulosas planetarias Wolfgang Steffen Alberto López.
ASYMMETRIC PLANETARY NEBULAE III Mt. Rainier National Park 28 July - 1 August 2003 Evidence of Bipolar Structures in Precursors of PNe Evidence of Bipolar.
Galaxies Chapter 16. Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes and sizes.
The Challenges of the Last Decade of Observations of PNe Gdansk June, 2005 Bruce Balick University of Washington HST image by Hans Van Winckel, and Martin.
+ Criteria for Candidates Altitude > 40°; Apparent Magnitude > 14; Available Distance and Angular Radius; Available Spectra Criteria for Candidates Altitude.
Planetary Nebulae beyond the Milky Way – historical overview M. J. Barlow Dept. of Physics & Astronomy University College London.
The potential of JWST to Measure the Mass- Loss Return from Stars to Galaxies Acknowledgements: Funding from NASA-ADAP, Herschel/HERITAGE, and NAG5 grants.
STUDYING NEBULAE EJECTED FROM MASSIVE STARS WITH HERSCHEL Chloi Vamvatira-Nakou ARC meeting - 11 February 2010 Centre Spatiale de Liège (CSL) (PhD student.
Abundances in Asymmetric PNe: confrontation to AGB models Letizia Stanghellini, NOAO Special thanks: Martin Guerrero, Katia Cunha, Arturo Manchado, Eva.
The planetary nebula M2-9: Balmer line profiles of the nuclear region Silvia Torres-Peimbert 1 Anabel Arrieta 2 Leonid Georgiev 1 1 Instituto de Astronomía,
The Close Binary Central Star of the Young Planetary Nebula HB12 C. H. Hsia a, W. H. Ip a, J.Y. Hu b a Institute of Astronomy, National Central University,
Axisymmetrical velocity structure in bipolar PNe Martina Dobrinčić M. Guerrero, A. Manchado, E. Villaver.
The Nature of Galaxies Chapter 17. Other Galaxies External to Milky Way –established by Edwin Hubble –used Cepheid variables to measure distance M31 (Andromeda.
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
GalaxiesGalaxies Learning Outcome (Student will…): compare characteristics & classification of various galaxies.
Hot gas in galaxy pairs Olga Melnyk. It is known that the dark matter is concentrated in individual haloes of galaxies and is located in the volume of.
Hee-Won Lee ARCSEC and Dept. of Astronomy Sejong University 2010 August 26.
Central stars? Do bipolar PNe really have more massive progenitors? Central stars? Eva Villaver (STScI/ESA) X.
Using planetary nebulae to analyze the Galactic abundance gradient (a progress report) Miriam Peña - Grażyna Stasińska - Sławomir Górny 1) Instituto de.
The population of planetary nebulae Letizia Stanghellini National Optical Astronomy Observatory.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Symbiotic or planetary nebulae? Miguel Santander-García Romano L. M. Corradi Antonio Mampaso Asymmetrical Planetary Nebulae IV, Los Cancajos, La Palma,
Garching, 19/05/20041 Modelling the PNLF: Population Effects on the Bright Cut-off Paola Marigo – Dipartimento di Astronomia,Padova Léo Girardi – Osservatorio.
Dusty disks in evolved stars?
Magnetic fields in Planetary and Proto Planetary
Morphological classification of new candidate PNe in an IPHAS sample Kerttu Viironen IAC Collaboration: A. Mampaso (IAC) R. Corradi (ING, IAC), R. Greimel.
Local Group Census NGC 6822 P. Leisy (1,3) L. Magrini (2), R. Corradi (1), A. Mampaso (3) (1) Isaac Newton Group (La Palma, SPAIN) (2) Universita’ di Firenze.
Spectroscopy of Planetary Nebulae in Sextans A and Sextans B Laura Magrini (1), Mario Perinotto (1), Pierre Leisy (2, 3), Romano L.M. Corradi (2), Antonio.
3-D study of the expansion of the nebula of the symbiotic Mira He2-147 M. Santander-García 1, R.L.M. Corradi 2,1 & A. Mampaso 1 1 Instituto de Astrofísica.
Planetary nebulae beyond the Milky Way - May , Magellanic Cloud planetary nebulae as probes of stellar evolution and populations Letizia Stanghellini.
Hydrodynamical Interpretation of Basic Nebular Structures
ANGULAR EXPANSION IN PLANETARY NEBULAE FROM RADIO INTERFEROMETRIC DATA Yolanda Gómez Centro de Radioastronomía y Astrofísica, UNAM México.
The Inter-Galactic Populations and Unbound Dark Matter Ing-Guey Jiang and Yu-Ting Wu National Tsing-Hua University Taiwan.
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
A comprehensible trace of formation and chemical enrichment of a given stellar system involves the built of several chemical diagrams describing the evolution.
Lecture 10: Bubbles and PNe September 26, III. Conduction Layer - Probe the thermal conduction layer High ions produced by thermal collisions O.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Central stars of PNe in the Magellanic Clouds Eva Villaver (STScI/ESA) Letizia Stanghellini & Dick Shaw (NOAO)
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Stellar evolution in the post-AGB stage Olga Suárez Laboratorio de Astrofísica Espacial y Física Fundamental – Madrid (Spain) Supervisors: Minia Manteiga.
Globular Clusters Globular clusters are clusters of stars which contain stars of various stages in their evolution. An H-R diagram for a globular cluster.
from Central Stars of Planetary Nebulae
William E. Harris McMaster University
The Chemical Evolution of Dynamically Hot Systems
Swayamtrupta Panda National Institute of Technology Rourkela, India
When stars collide: of planetary nebulae, jets and cosmic outbursts
HST Surveys of the LMC Planetary Nebulae
Planetary Nebula abundances in NGC 5128 with FORS
W.J. Maciel, R.D.D. Costa, T.E.P. Idiart IAG/USP – São Paulo - Brazil
Presentation transcript:

Correlation of PN morphology and nebular parameters Arturo Manchado Instituto de Astrofísica de Canarias

Colaborators Eva Villaver STSCI Letizia Stanghellini STSCI Martín Guerrero Instituto de Astrofísica de Andalucía

PNe morphology vs. stellar evolution An AGB star can lose up to 80% of its mass Round Interacting wind model: The PN is formed by the interaction of a low density fast wind with a high density slow wind (e.g Kwok, Purton & Fitzgerald 1978, ApJ 219, 17) First observational evidence hot bubble in NGC 7009 Guerrero, Gruendl, Chu 2002, A&A 387, L1 Elliptical Interacting wind model with an ecuatorial density enhancement Frank, Balick, Icke, Mellema 1993, ApJ 404, L25 Mellema 1995, "Asymmetrical PN", ed. Harpaz, p. 229

Jets & ansae Frank, A., Balick, B., Livio, M ApJ, 471, L53 Bipolar Binaries, commom envelope phase, substellar interaction (Soker, 1997, ApJSS, 112, 487) Magnetic fields García-Segura et al ApJ, 517, 767 Pointsymmetric García-Segura, G. & López, J.A ApJ, 544, 336 Muliple Shell PNe Villaver, Manchado, García-Segura, 2002 ApJ, 581, 1204 Steffen, M.; Schönberner, D. 2000A&A, 357, 180

Interaction with the Insterstellar Medium Villaver, García-Segura, Manchado,2003 ApJ, 585, L49 20 km/s causes asymmetry due to interaction with the IM Morphology of PPNe Ueta, Meixner, Bobrowsky 2000 AJ, 528, 861 sole - round, elliptical duplex - bipolar Review on Shapes and Saphing of Planetary Nebulae Balick, Frank 2002, Annu. Rev. Astron. Astrophys. 40, 439

On the Morphology Extended halos Curtis, H.D. 1918, Pub. Lick Obs. 13, 57 "binebulous" and circular nebula Greig, W. E., 1972, A&A 18, of non-stellar PNe bipolar, round, disk-like, and annular Zuckerman, B., & Aller, L. H. 1986, ApJ 301, 772 Round, elliptical and butterfly Balick, B. 1987, AJ 94, Multiple shells Chu, Y. -H., Jacoby, G. H., & Arendt, R. 1987, ApJS 64, PNe; stellar (S), elliptical (E), bipolar (B), pointsymmetric (P), and irregular (I) Schwarz, H. E., Corradi, R. L. M., & Melnik J A&AS 96, PNe; round(R), bipolar(B), elliptical(E),quadrupolar(Q), pointsymmetric (P) Manchado, A., Guerrero, M.A., Stanghellini, L., & Serra-Ricart, M. 1996, The IAC Morphological Catalog of Northern Galactic PN, ed. IAC PNe Górny, S.K., Schwarz, H.E., Corradi, R.L.M., Winckel, H. van, 1999, A&AS 136, 145

On the Morphology 50 MSPN, Corradi, Schoenberner, Steffen, Perinotto 2003, Mon. Not. R. Astron. Soc. 340, % show asymmetry 50 PNs with low-ionization structures (LISs), Goncalves, Corradi, Mampaso 2001, AJ 547, PNs Large Magellanic Cloud Stanghellini, Blades, Osmern Barlow, Liu, 1999 AJ, 510,687 Shaw, Stanghellini, Mutchler, Balick, Blades, 2001, 548, 727

On the structural classification Projection effects Pottasch, S.R Planetary Nebulae, ed. Reidel Evolutionary scheme: early, middle, late; round, elliptical, butterfly Balick, B. 1987, AJ 94, % of PNe are Multiple Shell Planetary Nebulae Chu, Y. -H., Jacoby, G. H., & Arendt, R. 1987, ApJS 64, 529 Central star mass distribution different for bipolar and elliptical. Elliptical are younger and more luminous than MPSN Stanghellini, L., Corradi, R. L. M, & Schwarz, H. E, 1993 A&A 279, 521

Classification scheme Balick, B. 1987, AJ 94, 671

Corradi, R. L. M, & Schwarz, H. E. 1995, A&A 293, 871 (250 PNe) Elliptical z = 320 M < 1.1 M  Bipolar z = 130 M > 1.5 M  Overabundance helium, nitrogen and neon Giant dimensions Górny, S.K., Stasinska, G., & Tylenda, R. 1997, A&A 318, 256 (125 PNe) Bipolar: higher mass, smaller z, higher N/O Pointsymmetric a separate class Elliptical z = 680 Mean Central Star mass 0.61 M  Bipolar z = 360 Mean Central Star mass 0.68 M  Pointsymmetric z = 800 Mean Central Star mass 0.59 M  Shaw,R.A, Stanghellini,L.,Mutchler,M.,Balick,B.,Blades,J.C. 2000, ApJ, 548, 727 (29 PNe) Elliptical 17 % Round29 % Bipolar51 % Pointsymmetric 3 %

Stanghellini, Manchado, Villaver, Guerrero 2002, AJ 576, 285 Different mass ranges for Round, Elliptical and Bipolar PNs Soker 2002, A&A 386, 885 Spherical PN low metalicity 70% are further away from the galactic center than the sun is from the galactic center.

Górny, S.K., Stasinska, G., & Tylenda, R. 1997, A&A 318, 256

On the statistics Sample selection Complete sample (255 PNe) All PNe larger than 4 arcseconds in Acker´s catalog (1992). All northern PNe (  >  11) H , [N II], [O III] images 213 PNe from: Manchado, A., Guerrero, M.A., Stanghellini, L., & Serra- Ricart, M. 1996, The IAC Morphological Catalog of Northern Galactic PN ed. IAC 20 PNe from Balick, B. 1987, AJ 94, PNe from Schwarz, H. E., Corradi, R. L. M., & Melnik J. 1992, A&AS 96, 23

Database Statistical distances: Cahn, J.H., Kaler, J.B., Stanghellini, L. 1992, A&AS 94, 399 NASA Astrophysics Data System

Chemical abundances Emission lines: Kaler, J.B., Shaw, R.A., Browning, L. 1997, PASP 109, 289 Guerrero, M.A. 1995, PhD Thesis Plasma diagnostic + ionic chemical abundances nebular analysis package in IRAF/STSDAS (Shaw et al.1998) Helium abundances collisional effects Clegg (1987)

Abell 39

Abell 50

NGC 2438

Abell 72

NGC 1501

IC 1295

NGC 6853

He 2-429

NGC 650

K 4-55

He 2-437

M 3-28

On the projection effects Round classification = 10 and 27.5 arcsec a/b < Projected ellipsoid (c:1:1) Observed ellipse x=  (c 2  (sin(i) 2 )+(cos(i)) 2 ) x  a/b i inclination angle

On the projection effects

1.2< c <1.5 P  7.3 % N(elliptical)= elliptical seen as round N(round)=63 17 % of round could be elliptical 40 % of MSPN are asymmetrical

d < 6.5 Kpc

Morphological classes whole sample E=58 %,R=25 %, B=17 % Taking into account projection effect E=63 %, R=20 %, B=17 % d < 6.5 Kpc E=62 %, R=26 %, B=12 % Taking into account projection effect E=66 %, R=22 %, B=12 %

d < 6 Kpc

Round, Bipolar, Elliptical

=638 =276 =259 =56 =135

=0.102 =0.121 =0.136

=0.27 =0.31 =1.3

Conclusions Sample complete up to 6.5 Kpc - 66 % elliptical - 22 % round - 12 % bipolar -46 % of round are MSPN -35 % of elliptical are MSPN -40 % of MSPN are asymmetrical Central star temperature Higher T for bipolar than for round + elliptical

N/O R=0.27, E=0.31, B=1.3 type I PNe for bipolar type II PNe for round and elliptical Galactic latitude |b| round 12 elliptical 7 bipolar 3 He/H R=0.102, E=0.121, B=0.136 type I PNe for bipolar type II PNe for round and elliptical

Galactic height  z  round 753 elliptical 308 M 1.0 M  bipolar 179 M 1.5 M  elliptical + pointsymmetric 310M 1.0 M  elliptical 308M 1.0 M  bipolar + pointsymmetric 248 M 1.2 M  bipolar 110M 1.9 M  Different progenitor masses for round, elliptical, bipolar and bipolar + pointsymetric Higher mass for the central stars of bipolar Two different mass distribution on the formation of bipolar PNe (García-Segura et al. 2000, RevMexAA) Single high mass stars will form bipolar PNe due to rotation Binary systems will form bipolar + poitsymmetric PNe

Future work Complete the data set: Abundances, expansion velocities, central star parameters Extend the study to the other galaxies (LMC) Extend the study to molecular gas (near-IR+ALMA) and dust (medium-IR)

NGC 2346 HST+WFPC2+N II microns H2 S(1)(1-0) microns

IRAS