Chapter 6 Transform-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Slides:



Advertisements
Similar presentations
RAIK 283: Data Structures & Algorithms
Advertisements

The Dictionary ADT Definition A dictionary is an ordered or unordered list of key-element pairs, where keys are used to locate elements in the list. Example:
Heaps1 Part-D2 Heaps Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is a pair (key, value)
Transform and Conquer Chapter 6. Transform and Conquer Solve problem by transforming into: a more convenient instance of the same problem (instance simplification)
Divide-and-Conquer The most-well known algorithm design strategy:
Transform & Conquer Replacing One Problem With Another Saadiq Moolla.
Copyright © 2007 Pearson Addison-Wesley. All rights reserved. Problem Reduction Dr. M. Sakalli Marmara Unv, Levitin ’ s notes.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Chapter 6: Transform and Conquer
Design and Analysis of Algorithms - Chapter 61 Transform and Conquer Solve problem by transforming into: b a more convenient instance of the same problem.
Transform & Conquer Lecture 08 ITS033 – Programming & Algorithms
COSC 3100 Transform and Conquer
6-0 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 LECTURE.
Chapter 4 Divide-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
MA/CSSE 473 Day 25 Transform and Conquer Student questions?
Design and Analysis of Algorithms – Chapter 61 Transform and Conquer Dr. Ying Lu RAIK 283: Data Structures & Algorithms.
Chapter 4 Divide-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
TCSS 343, version 1.1 Algorithms, Design and Analysis Transform and Conquer Algorithms Presorting HeapSort.
Chapter 2 Fundamentals of the Analysis of Algorithm Efficiency Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Course Review COMP171 Spring Hashing / Slide 2 Elementary Data Structures * Linked lists n Types: singular, doubly, circular n Operations: insert,
Design and Analysis of Algorithms - Chapter 61 Transform and Conquer Solve problem by transforming into: b a more convenient instance of the same problem.
© 2006 Pearson Addison-Wesley. All rights reserved12 A-1 Chapter 12 Heaps.
Chapter 11 Limitations of Algorithm Power Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Priority Queues1 Part-D1 Priority Queues. Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is.
Chapter 12 B Priority Queues. © 2004 Pearson Addison-Wesley. All rights reserved 12 B-2 The ADT Priority Queue: A Variation of the ADT Table The ADT priority.
Maps A map is an object that maps keys to values Each key can map to at most one value, and a map cannot contain duplicate keys KeyValue Map Examples Dictionaries:
Theory of Algorithms: Transform and Conquer James Gain and Edwin Blake {jgain | Department of Computer Science University of Cape.
ADT Table and Heap Ellen Walker CPSC 201 Data Structures Hiram College.
Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 1 Chapter.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Chapter 6 Transform-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Merge Sort. What Is Sorting? To arrange a collection of items in some specified order. Numerical order Lexicographical order Input: sequence of numbers.
1 CSC 421: Algorithm Design Analysis Spring 2014 Transform & conquer  transform-and-conquer approach  presorting  balanced search trees, heaps  Horner's.
© 2006 Pearson Addison-Wesley. All rights reserved13 B-1 Chapter 13 (continued) Advanced Implementation of Tables.
Chapter 6 Transform-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more convenient instance of the same problem (instance.
Sorting. Pseudocode of Insertion Sort Insertion Sort To sort array A[0..n-1], sort A[0..n-2] recursively and then insert A[n-1] in its proper place among.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of CHAPTER 12: Multi-way Search Trees Java Software Structures: Designing.
Chapter 2: Basic Data Structures. Spring 2003CS 3152 Basic Data Structures Stacks Queues Vectors, Linked Lists Trees (Including Balanced Trees) Priority.
The ADT Table The ADT table, or dictionary Uses a search key to identify its items Its items are records that contain several pieces of data 2 Figure.
© 2004 Goodrich, Tamassia Trees
Week 10 - Friday.  What did we talk about last time?  Graph representations  Adjacency matrix  Adjacency lists  Depth first search.
Lecture 15 Jianjun Hu Department of Computer Science and Engineering University of South Carolina CSCE350 Algorithms and Data Structure.
1 Heaps A heap is a binary tree. A heap is best implemented in sequential representation (using an array). Two important uses of heaps are: –(i) efficient.
Lecture 14 Jianjun Hu Department of Computer Science and Engineering University of South Carolina CSCE350 Algorithms and Data Structure.
Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 1 Chapter.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Week 15 – Wednesday.  What did we talk about last time?  Review up to Exam 1.
Heaps © 2010 Goodrich, Tamassia. Heaps2 Priority Queue ADT  A priority queue (PQ) stores a collection of entries  Typically, an entry is a.
1 CSC 421: Algorithm Design Analysis Spring 2013 Transform & conquer  transform-and-conquer approach  presorting  balanced search trees, heaps  Horner's.
Chapter 6 Transform-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Chapter 6 Transform-and-Conquer
Divide-and-Conquer The most-well known algorithm design strategy:
Analysis & Design of Algorithms (CSCE 321)
Sorting.
Divide-and-Conquer The most-well known algorithm design strategy:
Chapter 6 Transform and Conquer.
Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more convenient instance [eg sorted] of the same problem.
Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more convenient instance of the same problem (instance.
Chapter 6: Transform and Conquer
Divide-and-Conquer The most-well known algorithm design strategy:
Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more convenient instance of the same problem (instance.
Transform and Conquer Transform and Conquer Transform and Conquer.
Divide-and-Conquer The most-well known algorithm design strategy:
Data structure: Heap Representation change: Heapsort Problem reduction
Data structure: Heap Representation change: Heapsort Problem reduction
Transform and Conquer Transform and Conquer Transform and Conquer.
CSC 380: Design and Analysis of Algorithms
CSC 380: Design and Analysis of Algorithms
Data structure: Heap Representation change: Heapsort Problem reduction
Presentation transcript:

Chapter 6 Transform-and-Conquer Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

6-1 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Transform and Conquer This group of techniques solves a problem by a transformation b to a simpler/more convenient instance of the same problem (instance simplification) b to a different representation of the same instance (representation change) b to a different problem for which an algorithm is already available (problem reduction)

6-2 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Instance simplification - Presorting Solve a problem’s instance by transforming it into another simpler/easier instance of the same problem Presorting Many problems involving lists are easier when list is sorted. b searching b computing the median (selection problem) b checking if all elements are distinct (element uniqueness) Also: b Topological sorting helps solving some problems for dags. b Presorting is used in many geometric algorithms. b Presorting is a special case of preprocessing.

6-3 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 How fast can we sort ? Efficiency of algorithms involving sorting depends on efficiency of sorting. Theorem (see Sec. 11.2):  log 2 n!   n log 2 n comparisons are necessary in the worst case to sort a list of size n by any comparison-based algorithm. Note: About nlog 2 n comparisons are also sufficient to sort array of size n (by mergesort).

6-4 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Searching with presorting Problem: Search for a given K in A[0..n-1] Presorting-based algorithm: Stage 1 Sort the array by an efficient sorting algorithm Stage 2 Apply binary search Stage 2 Apply binary search Efficiency: Θ (nlog n) + O(log n) = Θ (nlog n) Good or bad? Why do we have our dictionaries, telephone directories, etc. sorted?

6-5 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Element Uniqueness with presorting b Presorting-based algorithm Stage 1: sort by efficient sorting algorithm (e.g. mergesort) Stage 1: sort by efficient sorting algorithm (e.g. mergesort) Stage 2: scan array to check pairs of adjacent elements Stage 2: scan array to check pairs of adjacent elements Efficiency : Θ (nlog n) + O(n) = Θ (nlog n) Efficiency : Θ (nlog n) + O(n) = Θ (nlog n) b Brute force algorithm Compare all pairs of elements Efficiency: O(n 2 ) b Another algorithm? Hashing, which works well on avg.

6-6 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Instance simplification – Gaussian Elimination Given: A system of n linear equations in n unknowns with an arbitrary coefficient matrix. Transform to: An equivalent system of n linear equations in n unknowns with an upper triangular coefficient matrix. Solve the latter by substitutions starting with the last equation and moving up to the first one. a 11 x 1 + a 12 x 2 + … + a 1n x n = b 1 a 1,1 x 1 + a 12 x 2 + … + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n = b 2 a 22 x 2 + … + a 2n x n = b 2 a n1 x 1 + a n2 x 2 + … + a nn x n = b n a nn x n = b n

6-7 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Gaussian Elimination (cont.) The transformation is accomplished by a sequence of elementary operations on the system’s coefficient matrix (which don’t change the system’s solution): for i ←1 to n-1 do replace each of the subsequent rows (i.e., rows i+1, …, n) by the difference between that row and an appropriate multiple of the i-th row to make the new coefficient in the i-th column of that row 0

6-8 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Example of Gaussian Elimination Solve 2x 1 - 4x 2 + x 3 = 6 3x 1 - x 2 + x 3 = 11 x 1 + x 2 - x 3 = -3 Gaussian elimination row2 – (3/2)*row / row2 – (3/2)*row / row3 – (1/2)*row /2 -6 row3–(3/5)*row row3 – (1/2)*row /2 -6 row3–(3/5)*row / / /5 -36/ /5 -36/5 Backward substitution Backward substitution x 3 = (-36/5) / (-6/5) = 6 x 3 = (-36/5) / (-6/5) = 6 x 2 = (2+(1/2)*6) / 5 = 1 x 2 = (2+(1/2)*6) / 5 = 1 x 1 = (6 – 6 + 4*1)/2 = 2 x 1 = (6 – 6 + 4*1)/2 = 2

6-9 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Pseudocode and Efficiency of Gaussian Elimination Stage 1: Reduction to the upper-triangular matrix for i ← 1 to n-1 do for j ← i+1 to n do for k ← i to n+1 do A[j, k] ← A[j, k] - A[i, k] * A[j, i] / A[i, i] //improve! for j ← i+1 to n do for k ← i to n+1 do A[j, k] ← A[j, k] - A[i, k] * A[j, i] / A[i, i] //improve! Stage 2: Backward substitution for j ← n downto 1 do t ← 0 t ← 0 for k ← j +1 to n do for k ← j +1 to n do t ← t + A[j, k] * x[k] x[j] ← (A[j, n+1] - t) / A[j, j] t ← t + A[j, k] * x[k] x[j] ← (A[j, n+1] - t) / A[j, j] Efficiency: Θ (n 3 ) + Θ (n 2 ) = Θ (n 3 ) Efficiency: Θ (n 3 ) + Θ (n 2 ) = Θ (n 3 )

6-10 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Searching Problem Problem: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any b Searching must be considered in the context of: file size (internal vs. external)file size (internal vs. external) dynamics of data (static vs. dynamic)dynamics of data (static vs. dynamic) b Dictionary operations (dynamic data): find (search)find (search) insertinsert deletedelete

6-11 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Taxonomy of Searching Algorithms b List searching (good for static data) sequential searchsequential search binary searchbinary search interpolation searchinterpolation search b Tree searching (good for dynamic data) binary search treebinary search tree binary balanced trees: AVL trees, red-black treesbinary balanced trees: AVL trees, red-black trees multiway balanced trees: 2-3 trees, trees, B treesmultiway balanced trees: 2-3 trees, trees, B trees b Hashing (good on average case) open hashing (separate chaining)open hashing (separate chaining) closed hashing (open addressing)closed hashing (open addressing)

6-12 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Binary Search Tree Arrange keys in a binary tree with the binary search tree property: K <K<K>K>K Example: 5, 3, 1, 10, 12, 7,

6-13 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Dictionary Operations on Binary Search Trees Searching – straightforward Insertion – search for key, insert at leaf where search terminated Deletion – 3 cases: deleting key at a leaf deleting key at node with single child deleting key at node with two children Efficiency depends of the tree’s height:  log 2 n   h  n-1, with height average (random files) be about 3log 2 n Efficiency depends of the tree’s height:  log 2 n   h  n-1, with height average (random files) be about 3log 2 n Thus all three operations have Thus all three operations have worst case efficiency:  (n) worst case efficiency:  (n) average case efficiency:  (log n) (CLRS, Ch. 12) average case efficiency:  (log n) (CLRS, Ch. 12) Bonus: inorder traversal produces sorted list Bonus: inorder traversal produces sorted list

6-14 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Balanced Search Trees Attractiveness of binary search tree is marred by the bad (linear) worst-case efficiency. Two ideas to overcome it are: b to rebalance binary search tree when a new insertion makes the tree “too unbalanced” AVL trees AVL trees red-black trees red-black trees b to allow more than one key and two children 2-3 trees 2-3 trees trees trees B-trees B-trees

6-15 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Balanced trees: AVL trees Definition An AVL tree is a binary search tree in which, for every node, the difference between the heights of its left and right subtrees, called the balance factor, is at most 1 (with the height of an empty tree defined as -1) Tree (a) is an AVL tree; tree (b) is not an AVL tree

6-16 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Rotations If a key insertion violates the balance requirement at some node, the subtree rooted at that node is transformed via one of the four rotations. (The rotation is always performed for a subtree rooted at an “unbalanced” node closest to the new leaf.) Single R-rotation Double LR-rotation

6-17 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 General case: Single R-rotation

6-18 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 General case: Double LR-rotation

6-19 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 AVL tree construction - an example Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

6-20 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 AVL tree construction - an example (cont.)

6-21 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Analysis of AVL trees b h  log 2 (n + 2) average height: 1.01 log 2 n for large n (found empirically) average height: 1.01 log 2 n for large n (found empirically) b Search and insertion are O(log n) b Deletion is more complicated but is also O(log n) b Disadvantages: frequent rotationsfrequent rotations complexitycomplexity b A similar idea: red-black trees (height of subtrees is allowed to differ by up to a factor of 2) N(h-1) + N(h-2)  N(h)

6-22 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Multiway Search Trees Definition A multiway search tree is a search tree that allows more than one key in the same node of the tree. Definition A node of a search tree is called an n-node if it contains n-1 ordered keys (which divide the entire key range into n intervals pointed to by the node’s n links to its children): Note: Every node in a classical binary search tree is a 2-node Note: Every node in a classical binary search tree is a 2-node k 1 < k 2 < … < k n-1 < k 1 [k 1, k 2 )  k n-1

6-23 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch Tree Definition A 2-3 tree is a search tree that b may have 2-nodes and 3-nodes b height-balanced (all leaves are on the same level) A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it’s split into two with the middle key promoted to the parent.

6-24 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch tree construction – an example Construct a 2-3 tree the list 9, 5, 8, 3, 2, 4, 7

6-25 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Analysis of 2-3 trees b log 3 (n + 1) - 1  h  log 2 (n + 1) - 1 b Search, insertion, and deletion are in  (log n) b The idea of 2-3 tree can be generalized by allowing more keys per node trees2-3-4 trees B-treesB-trees

6-26 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Heaps and Heapsort Definition A heap is a binary tree with keys at its nodes (one key per node) such that: b It is essentially complete, i.e., all its levels are full except possibly the last level, where only some rightmost keys may be missing  The key at each node is ≥ keys at its children (this is called a max-heap)

6-27 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Illustration of the heap’s definition a heap not a heap Note: Heap’s elements are ordered top down (along any path down from its root), but they are not ordered left to right

6-28 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Some Important Properties of a Heap b Given n, there exists a unique binary tree with n nodes that is essentially complete, with h =  log 2 n  is essentially complete, with h =  log 2 n  b The root contains the largest key b The subtree rooted at any node of a heap is also a heap b A heap can be represented as an array

6-29 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Heap’s Array Representation Store heap’s elements in an array (whose elements indexed, for convenience, 1 to n) in top-down left-to-right order Example: b Left child of node j is at 2j b Right child of node j is at 2j+1 b Parent of node j is at  j/2  b Parental nodes are represented in the first  n/2  locations

6-30 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Step 0: Initialize the structure with keys in the order given Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn’t satisfy the heap condition: keep exchanging it with its larger child until the heap condition holds Step 2: Repeat Step 1 for the preceding parental node Heap Construction (bottom-up)

6-31 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Example of Heap Construction Construct a heap for the list 2, 9, 7, 6, 5, 8

6-32 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Pseudopodia of bottom-up heap construction

6-33 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Stage 1: Construct a heap for a given list of n keys Stage 2: Repeat operation of root removal n-1 times: –Exchange keys in the root and in the last (rightmost) leaf –Decrease heap size by 1 –If necessary, swap new root with larger child until the heap condition holds Heapsort

6-34 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Sort the list 2, 9, 7, 6, 5, 8 by heapsort Stage 1 (heap construction) Stage 2 (root/max removal) | | | | | | | | | | | | | | | | Example of Sorting by Heapsort

6-35 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Stage 1: Build heap for a given list of n keys worst-case C(n) = C(n) = Stage 2: Repeat operation of root removal n-1 times (fix heap) worst-case C(n) = Both worst-case and average-case efficiency:  (nlogn) In-place: yes Stability: no (e.g., 1 1) C(n) = Both worst-case and average-case efficiency:  (nlogn) In-place: yes Stability: no (e.g., 1 1)  2(h-i) 2 i = 2 ( n – log 2 (n + 1))   (n) i=0 h-1 # nodes at level i  i=1 n-1 2log 2 i   (nlogn) Analysis of Heapsort

6-36 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 A priority queue is the ADT of a set of elements with numerical priorities with the following operations: find element with highest priorityfind element with highest priority delete element with highest prioritydelete element with highest priority insert (new) element with assigned priority (see below)insert (new) element with assigned priority (see below) b Heap is a very efficient way for implementing priority queues b A min-heap can also be used to handle priority queue in which highest priority = smallest number Priority Queue

6-37 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Insertion of a New Element into a Heap b Insert the new element at last position in heap. b Compare it with its parent and, if it violates heap condition, exchange them b Continue comparing the new element with nodes up the tree until the heap condition is satisfied Example: Insert key 10 Efficiency: O(log n)

6-38 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Horner’s Rule For Polynomial Evaluation Given a polynomial of degree n p(x) = a n x n + a n-1 x n-1 + … + a 1 x + a 0 and a specific value of x, find the value of p at that point. Two brute-force algorithms: p  0 p  a 0 ; power  1 for i  n downto 0 do for i  1 to n do power  1 power  power * x power  1 power  power * x for j  1 to i do p  p + a i * power for j  1 to i do p  p + a i * power power  power * x return p power  power * x return p p  p + a i * power p  p + a i * power return p

6-39 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Horner’s Rule Example: p(x) = 2x 4 - x 3 + 3x 2 + x - 5 Example: p(x) = 2x 4 - x 3 + 3x 2 + x - 5 = x(2x 3 - x 2 + 3x + 1) - 5 = x(2x 3 - x 2 + 3x + 1) - 5 = x(x(2x 2 - x + 3) + 1) - 5 = x(x(2x 2 - x + 3) + 1) - 5 = x(x(x(2x - 1) + 3) + 1) - 5 = x(x(x(2x - 1) + 3) + 1) - 5 Substitution into the last formula leads to a faster algorithm Substitution into the last formula leads to a faster algorithm Same sequence of computations are obtained by simply arranging the coefficient in a table and proceeding as follows: Same sequence of computations are obtained by simply arranging the coefficient in a table and proceeding as follows: coefficients x=3 x=3 2 3*2+(-1)=5 3*5+3=18 3*18+1=55 3*55+(-5)=160

6-40 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Horner’s Rule pseudocode Efficiency of Horner’s Rule: # multiplications = # additions = n Synthetic division of p(x) by (x-x 0 ) Example: Let p(x) = 2x 4 - x 3 + 3x 2 + x - 5. Find p(x):(x-3) 2x^3 + 5x^2 + 18x + 55

6-41 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Computing a n (revisited) Left-to-right binary exponentiation Initialize product accumulator by 1. Scan n’s binary expansion from left to right and do the following: If the current binary digit is 0, square the accumulator (S); if the binary digit is 1, square the accumulator and multiply it by a (SM). Example: Compute a 13. Here, n = 13 = binary rep. of 13: SM SM S SM accumulator: *a=a a 2 *a = a 3 (a 3 ) 2 = a 6 (a 6 ) 2 *a= a 13 (computed left-to-right) Efficiency: (b-1) ≤ M(n) ≤ 2(b-1) where b =  log 2 n  + 1

6-42 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Computing a n (cont.) Right-to-left binary exponentiation Scan n’s binary expansion from right to left and compute a n as the product of terms a 2 i corresponding to 1’s in this expansion. Example Compute a 13 by the right-to-left binary exponentiation. Here, n = 13 = a 8 a 4 a 2 a : a 2 i terms a 8 * a 4 * a : product (computed right-to-left) Efficiency: same as that of left-to-right binary exponentiation

6-43 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Problem Reduction This variation of transform-and-conquer solves a problem by a transforming it into different problem for which an algorithm is already available. To be of practical value, the combined time of the transformation and solving the other problem should be smaller than solving the problem as given by another method.

6-44 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Examples of Solving Problems by Reduction b computing lcm(m, n) via computing gcd(m, n) b counting number of paths of length n in a graph by raising the graph’s adjacency matrix to the n-th power b transforming a maximization problem to a minimization problem and vice versa (also, min-heap construction) b linear programming b reduction to graph problems (e.g., solving puzzles via state- space graphs) lcm(m,n)*gcd(m,n) = m*n

6-45 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 6 Examples of Solving Problems by Reduction b Counting number of paths of length n in a graph by raising the graph’s adjacency matrix to the n-th power If (directed) graph G has adjacency matrix A, then for any k, the (i,j) entry in A^k gives the number of paths from vertex i and j of length k. (Levitin, Ch. 6.6) A = [ ] A^2 = [ ]