1 Pertemuan 8 Variabel Acak-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.

Slides:



Advertisements
Similar presentations
Chapter 6 Continuous Random Variables and Probability Distributions
Advertisements

DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 06 Peluang Beberapa Sebaran Khusus Peubah Acak Diskrit Mata kuliah: A Statistik Ekonomi Tahun: 2010.
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 5-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
1 Pertemuan 18 Pembandingan Dua Populasi-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Chapter 6 Continuous Random Variables and Probability Distributions
Probability Distributions
1 Pertemuan 05 Sebaran Peubah Acak Diskrit Matakuliah: A0392-Statistik Ekonomi Tahun: 2006.
1 Pertemuan 7 Variabel Acak-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 3 Statistik Deskriptif-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Chapter Five Continuous Random Variables McGraw-Hill/Irwin Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 1 Pendahuluan-1 Matakuliah: A0064/Statistik Ekonomi Tahun: 2005 Versi: >
1 Pertemuan 12 Sampling dan Sebaran Sampling-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 2 Pendahuluan-2 Matakuliah: A0064/Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Copyright © 2014 by McGraw-Hill Higher Education. All rights reserved.
Chapter 5 Continuous Random Variables and Probability Distributions
Chapter 5 Discrete Probability Distributions
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 25 Metode Non Parametrik-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Five Discrete Probability Distributions GOALS When you have completed.
1 Pertemuan 11 Sampling dan Sebaran Sampling-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
Chapter 4 Continuous Random Variables and Probability Distributions
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
6- 1 Chapter Six McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Beberapa Distribusi Khusus
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Lecture 4 1 Discrete distributions Four important discrete distributions: 1.The Uniform distribution (discrete) 2.The Binomial distribution 3.The Hyper-geometric.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 6 Continuous Random Variables.
JMB Chapter 5 Part 2 EGR Spring 2011 Slide 1 Multinomial Experiments  What if there are more than 2 possible outcomes? (e.g., acceptable, scrap,
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
1 Topic 3 - Discrete distributions Basics of discrete distributions Mean and variance of a discrete distribution Binomial distribution Poisson distribution.
1 l Using Statistics Expected Values of Discrete Random Variables 離散隨機變數的期望值 The Binomial Distribution 二項分配 l Other Discrete Probability Distributions.
Peubah Acak Pertemuan 3 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
Exam 2: Rules Section 2.1 Bring a cheat sheet. One page 2 sides. Bring a calculator. Bring your book to use the tables in the back.
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 5-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Sebaran sampling Pertemuan 5 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
1 Pertemuan 13 Selang Kepercayaan-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Engineering Probability and Statistics - SE-205 -Chap 3 By S. O. Duffuaa.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
1 Pertemuan 17 Pembandingan Dua Populasi-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Chap 5-1 Discrete and Continuous Probability Distributions.
Chapter Six McGraw-Hill/Irwin
ONE DIMENSIONAL RANDOM VARIABLES
Math 4030 – 4a More Discrete Distributions
Known Probability Distributions
Discrete Random Variables
Engineering Probability and Statistics - SE-205 -Chap 4
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Pertemuan 13 Sebaran Seragam dan Eksponensial
Multinomial Experiments
Multinomial Experiments
Some Discrete Probability Distributions Part 2
Some Discrete Probability Distributions Part 2
Multinomial Experiments
Multinomial Experiments
Multinomial Experiments
Multinomial Experiments
Multinomial Experiments
Multinomial Experiments
Presentation transcript:

1 Pertemuan 8 Variabel Acak-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menghitung beberapa persoalan yang berkaiatan dengan sebaran geometris, poisson, dan sebaran seragam

3 Outline Materi Sebaran Geometris Sebaran Poisson Variabel Acak Kontinyu Sebaran Seragam

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Within the context of a binomial experiment, in which the outcome of each of n independent trials can be classified as a success (S) or a failure (F), the geometric random variable counts the number of trials until the first success The Geometric Distribution

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Example: A recent study indicates that Pepsi-Cola has a market share of 33.2% (versus 40.9% for Coca-Cola). A marketing research firm wants to conduct a new taste test for which it needs Pepsi drinkers. Potential participants for the test are selected by random screening of soft drink users to find Pepsi drinkers. What is the probability that the first randomly selected drinker qualifies? What’s the probability that two soft drink users will have to be interviewed to find the first Pepsi drinker? Three? Four? The Geometric Distribution - Example

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Calculating Geometric Distribution Probabilities using the Template

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The hypergeometric probability distribution is useful for determining the probability of a number of occurrences when sampling without replacement. It counts the number of successes (x) in n selections, without replacement, from a population of N elements, S of which are successes and (N-S) of which are failures. 3-7 The Hypergeometric Distribution

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Example: Suppose that automobiles arrive at a dealership in lots of 10 and that for time and resource considerations, only 5 out of each 10 are inspected for safety. The 5 cars are randomly chosen from the 10 on the lot. If 2 out of the 10 cars on the lot are below standards for safety, what is the probability that at least 1 out of the 5 cars to be inspected will be found not meeting safety standards? Thus, P(1) + P(2) = = The Hypergeometric Distribution - Example

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Calculating Hypergeometric Distribution Probabilities using the Template

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The Poisson probability distribution is useful for determining the probability of a number of occurrences over a given period of time or within a given area or volume. That is, the Poisson random variable counts occurrences over a continuous interval of time or space. It can also be used to calculate approximate binomial probabilities when the probability of success is small (p  0.05) and the number of trials is large (n  20). where  is the mean of the distribution (which also happens to be the variance) and e is the base of natural logarithms (e= ). 3-8 The Poisson Distribution

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Example 3-5: Telephone manufacturers now offer 1000 different choices for a telephone (as combinations of color, type, options, portability, etc.). A company is opening a large regional office, and each of its 200 managers is allowed to order his or her own choice of a telephone. Assuming independence of choices and that each of the 1000 choices is equally likely, what is the probability that a particular choice will be made by none, one, two, or three of the managers? n = 200  = np = (200)(0.001) = 0.2 p = 1/1000 = P e P e P e P e (). ! (). ! (). ! (). !         = = = = The Poisson Distribution - Example

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Calculating Poisson Distribution Probabilities using the Template

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Poisson assumptions: The probability that an event will occur in a short interval of time or space is proportional to the size of the interval. In a very small interval, the probability that two events will occur is close to zero. The probability that any number of events will occur in a given interval is independent of where the interval begins. The probability of any number of events occurring over a given interval is independent of the number of events that occurred prior to the interval. The Poisson Distribution (continued)

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., X P ( x )  = X P ( x )  = X P ( x )  = X P ( x )  = 1.0 The Poisson Distribution (continued)

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., A discrete random variable: – counts occurrences – has a countable number of possible values – has discrete jumps between successive values – has measurable probability associated with individual values – probability is height A continuous random variable: – measures (e.g.: height, weight, speed, value, duration, length) – has an uncountably infinite number of possible values – moves continuously from value to value – has no measurable probability associated with individual values – probability is area For example: Binomial n=3p=.5 xP(x) C 1 P ( x ) Binomial: n=3 p=.5 For example: In this case, the shaded area epresents the probability that the task takes between 2 and 3 minutes Minutes P ( x ) Minutes to Complete Task Discrete and Continuous Random Variables - Revisited

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The time it takes to complete a task can be subdivided into: Half-Minute IntervalsQuarter-Minute Intervals Eighth-Minute Intervals Or even infinitesimally small intervals: When a continuous random variable has been subdivided into infinitesimally small intervals, a measurable probability can only be associated with an interval of values, and the probability is given by the area beneath the probability density function corresponding to that interval. In this example, the shaded area represents P(2  X  ). Minutes to Complete Task: Probability Density Function Minutes f ( z ) From a Discrete to a Continuous Distribution

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., A continuous random variable is a random variable that can take on any value in an interval of numbers. The probabilities associated with a continuous random variable X are determined by the probability density function of the random variable. The function, denoted f(x), has the following properties. 1. f(x)  0 for all x. 2.The probability that X will be between two numbers a and b is equal to the area under f(x) between a and b. 3.The total area under the curve of f(x) is equal to The cumulative distribution function of a continuous random variable: F(x) = P(X  x) =Area under f(x) between the smallest possible value of X (often -  ) and the point x. A continuous random variable is a random variable that can take on any value in an interval of numbers. The probabilities associated with a continuous random variable X are determined by the probability density function of the random variable. The function, denoted f(x), has the following properties. 1. f(x)  0 for all x. 2.The probability that X will be between two numbers a and b is equal to the area under f(x) between a and b. 3.The total area under the curve of f(x) is equal to The cumulative distribution function of a continuous random variable: F(x) = P(X  x) =Area under f(x) between the smallest possible value of X (often -  ) and the point x. 3-9 Continuous Random Variables

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., F(x) f(x) x x 0 0 b a F(b) F(a) 1 b a } P(a  X  b) = Area under f(x) between a and b = F(b) - F(a) P(a  X  b)=F(b) - F(a) Probability Density Function and Cumulative Distribution Function

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The uniform [a,b] density: 1/(a – b) for a  X  b f(x)= 0 otherwise E(X) = (a + b)/2; V(X) = (b – a) 2 /12 { bb1a x f ( x ) The entire area under f(x) = 1/(b – a) * (b – a) = 1.00 The area under f(x) from a1 to b1 = P(a1  X  b  ) = (b1 – a1)/(b – a) 3-10 Uniform Distribution a1 Uniform [a, b] Distribution

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The uniform [0,5] density: 1/5 for 0  X  5 f(x)= 0 otherwise E(X) = 2.5 { x f ( x ) Uniform [0,5] Distribution The entire area under f(x) = 1/5 * 5 = 1.00 The area under f(x) from 1 to 3 = P(1  X  3) = (1/5)2 = 2/5 Uniform Distribution (continued)

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Calculating Uniform Distribution Probabilities using the Template

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The exponential random variable measures the time between two occurrences that have a Poisson distribution f ( x ) Exponential Distribution: = 2 Time 3-11 Exponential Distribution

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Example The time a particular machine operates before breaking down (time between breakdowns) is known to have an exponential distribution with parameter  = 2. Time is measured in hours. What is the probability that the machine will work continuously for at least one hour? What is the average time between breakdowns? FxePXxe PXe xx ()() (). ()()      EX().  Exponential Distribution - Example

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Calculating Exponential Distribution Probabilities using the Template

25 Penutup Materi Variabel Acak ini pada hakekatnya adalah dasar-dasar untuk pemahaman pola sebaran data, mengingat penarikan kesimpulan/pengambilan keputusan mempunyai sifat ketidakpastian, dan pada umumnya didasarkan pada suatu sampel yang dipilih