CS 206 Introduction to Computer Science II 03 / 30 / 2009 Instructor: Michael Eckmann.

Slides:



Advertisements
Similar presentations
CS 206 Introduction to Computer Science II 04 / 01 / 2009 Instructor: Michael Eckmann.
Advertisements

Graphs COP Graphs  Train Lines Gainesville OcalaDeltona Daytona Melbourne Lakeland Tampa Orlando.
CSE 390B: Graph Algorithms Based on CSE 373 slides by Jessica Miller, Ruth Anderson 1.
Graphs CSC 220 Data Structure. Introduction One of the Most versatile data structures like trees. Terminology –Nodes in trees are vertices in graphs.
CS 206 Introduction to Computer Science II 03 / 04 / 2009 Instructor: Michael Eckmann.
Graph Theory, DFS & BFS Kelly Choi What is a graph? A set of vertices and edges –Directed/Undirected –Weighted/Unweighted –Cyclic/Acyclic.
CS 206 Introduction to Computer Science II 03 / 27 / 2009 Instructor: Michael Eckmann.
Graphs - II CS 2110, Spring Where did I leave that book?
Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u
Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u
Graphs Chapter 12. Chapter Objectives  To become familiar with graph terminology and the different types of graphs  To study a Graph ADT and different.
Chapter 8, Part I Graph Algorithms.
Graph Search Methods Spring 2007 CSE, POSTECH. Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u. A search method.
CS 206 Introduction to Computer Science II 11 / 07 / 2008 Instructor: Michael Eckmann.
Graphs Graphs are the most general data structures we will study in this course. A graph is a more general version of connected nodes than the tree. Both.
Data Structure and Algorithms (BCS 1223) GRAPH. Introduction of Graph A graph G consists of two things: 1.A set V of elements called nodes(or points or.
Graphs By JJ Shepherd. Introduction Graphs are simply trees with looser restrictions – You can have cycles Historically hard to deal with in computers.
Graphs CS3240, L. grewe.
CS 206 Introduction to Computer Science II 11 / 11 / Veterans Day Instructor: Michael Eckmann.
Graph & BFS.
CS 206 Introduction to Computer Science II 10 / 31 / 2008 Happy Halloween!!! Instructor: Michael Eckmann.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
CS 206 Introduction to Computer Science II 11 / 10 / 2008 Instructor: Michael Eckmann.
Graph COMP171 Fall Graph / Slide 2 Graphs * Extremely useful tool in modeling problems * Consist of: n Vertices n Edges D E A C F B Vertex Edge.
Graph & BFS Lecture 22 COMP171 Fall Graph & BFS / Slide 2 Graphs * Extremely useful tool in modeling problems * Consist of: n Vertices n Edges D.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
CS 206 Introduction to Computer Science II 11 / 12 / 2008 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 11 / 03 / 2008 Instructor: Michael Eckmann.
Graphs. Graphs Many interesting situations can be modeled by a graph. Many interesting situations can be modeled by a graph. Ex. Mass transportation system,
CS 206 Introduction to Computer Science II 11 / 05 / 2008 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 03 / 25 / 2009 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 11 / 09 / 2009 Instructor: Michael Eckmann.
Breadth First Search (BFS) Part 2 COMP171. Graph / Slide 2 Shortest Path Recording * BFS we saw only tells us whether a path exists from source s, to.
Fall 2007CS 2251 Graphs Chapter 12. Fall 2007CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs To.
Graphs & Graph Algorithms Nelson Padua-Perez Bill Pugh Department of Computer Science University of Maryland, College Park.
CS 206 Introduction to Computer Science II 09 / 19 / 2008 Instructor: Michael Eckmann.
Dijkstra’s Algorithm. 2 Shortest-path Suppose we want to find the shortest path from node X to node Y It turns out that, in order to do this, we need.
Computer Science 112 Fundamentals of Programming II Graph Algorithms.
Dijkstras Algorithm Named after its discoverer, Dutch computer scientist Edsger Dijkstra, is an algorithm that solves the single-source shortest path problem.
Minimum Spanning Trees
Data Structures and Algorithms Ver. 1.0 Session 17 Objectives In this session, you will learn to: Implement a graph Apply graphs to solve programming problems.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Graph Traversal BFS & DFS. Review of tree traversal methods Pre-order traversal In-order traversal Post-order traversal Level traversal a bc d e f g hi.
COMP261 Lecture 6 Dijkstra’s Algorithm. Connectedness Is this graph connected or not? A Z FF C M N B Y BB S P DDGG AA R F G J L EE CC Q O V D T H W E.
Graphs – Part II CS 367 – Introduction to Data Structures.
10 Copyright © William C. Cheng Data Structures - CSCI 102 Graph Terminology A graph consists of a set of Vertices and a set of Edges C A B D a c b d e.
CS 206 Introduction to Computer Science II 11 / 16 / 2009 Instructor: Michael Eckmann.
Graph Introduction, Searching Graph Theory Basics - Anil Kishore.
1 Directed Graphs Chapter 8. 2 Objectives You will be able to: Say what a directed graph is. Describe two ways to represent a directed graph: Adjacency.
COSC 2007 Data Structures II
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Graphs and Paths : Chapter 15 Saurav Karmakar
Graph Searching CSIT 402 Data Structures II. 2 Graph Searching Methodology Depth-First Search (DFS) Depth-First Search (DFS) ›Searches down one path as.
GRAPH ALGORITHM. Graph A pair G = (V,E) – V = set of vertices (node) – E = set of edges (pairs of vertices) V = (1,2,3,4,5,6,7) E = ( (1,2),(2,3),(3,5),(1,4),(4,5),(6,7)
Graph Theory Def: A graph is a set of vertices and edges G={V,E} Ex. V = {a,b,c,d,e} E = {ab,bd,ad,ed,ce,cd} Note: above is a purely mathematical definition.
Graphs. What is a graph? In simple words, A graph is a set of vertices and edges which connect them. A node (or vertex) is a discrete position in the.
Nattee Niparnan. Graph  A pair G = (V,E)  V = set of vertices (node)  E = set of edges (pairs of vertices)  V = (1,2,3,4,5,6,7)  E = ((1,2),(2,3),(3,5),(1,4),(4,
Brute Force and Exhaustive Search Brute Force and Exhaustive Search Traveling Salesman Problem Knapsack Problem Assignment Problem Selection Sort and Bubble.
Brute Force and Exhaustive Search Brute Force and Exhaustive Search Traveling Salesman Problem Knapsack Problem Assignment Problem Selection Sort and Bubble.
A vertex u is reachable from vertex v iff there is a path from v to u.
Graphs Representation, BFS, DFS
CSE 373 Topological Sort Graph Traversals
Csc 2720 Instructor: Zhuojun Duan
CSC 172 DATA STRUCTURES.
Graphs Representation, BFS, DFS
Graphs Chapter 13.
Graphs.
Graph Traversals Depth-First Traversals. Algorithms. Example.
Graphs Part 2 Adjacency Matrix
INTRODUCTION A graph G=(V,E) consists of a finite non empty set of vertices V , and a finite set of edges E which connect pairs of vertices .
Presentation transcript:

CS 206 Introduction to Computer Science II 03 / 30 / 2009 Instructor: Michael Eckmann

Michael Eckmann - Skidmore College - CS Spring 2009 Today’s Topics Questions? Comments? Graphs –Implementation s Breadth First Search Depth First Search

Graphs Graphs can be represented in programs in many ways. Two common ways to represent them are: –adjacency matrix --- each row number r represents a vertex and the value at column c is true if there's an edge from vertex r to vertex c, false otherwise Notice that the type stored in the adjacency matrix is boolean Could we use this for weighted graphs? Could we use this for directed graphs? –edge lists store a linked list for each vertex, v i items in the list are those vertices v j for which there's an edge from v i to v j

Graphs Graph traversal –Breadth first search (BFS)‏ Pick a vertex at which to start Visit all of the adjacent vertices to the start vertex Then for each of the adjacent vertices, visit their adjacent vertices And so on until there are no more adjacent vertices Do not visit a vertex more than once –Only vertices that are reachable from the start vertex will be visited --- example on the board. –The order that vertices in a BFS are visited are in increasing order of length of path from starting vertex. –Those that have the same path length from the start vertex can be visited in any order. –Example of BFS on the board.

Graphs Implementation of breadth first search –Need a flag for each vertex to mark it as unvisited, waiting, or visited – so we don't visit vertices more than once. –Keep a queue which will hold the vertices to be visited –Keep a list of vertices as they are visited –BFS algorithm: Mark all vertices as unvisited Initially enqueue a vertex into the queue, mark it as waiting While the queue is not empty –Dequeue a vertex from the queue –Put it in the visited list, mark it as visited –Enqueue all the adjacent vertices that are marked as unvisited to the vertex just dequeued. –Mark the vertices just enqueued as waiting

Graphs Let's implement breadth first search (BFS).

Graphs Graph traversal –Depth first search (DFS)‏ Pick a vertex at which to start Visit one of its adjacent vertices then visit one of that one's adjacent vertices, and so on until there is no unvisited adjacent vertex of the one we're working on. Then backtrack one level and visit another adjacent vertex from that one and repeat. Do this until we're at the start vertex and there's no more unvisited adjacent vertices Do not visit a vertex more than once –Only vertices that are reachable from the start vertex will be visited –Those vertices that are adjacent to a vertex can be visited in any order.

Graphs Shortest path algorithms –problem is to find the shortest path from one given vertex to each of the other vertices. –output is a list of paths from given vertex to all other vertices –what real world examples might ever want to find the shortest path?

Graphs Shortest path algorithms –problem is to find the shortest path from one given vertex to each of the other vertices. –output is a list of paths from given vertex to all other vertices –the shortest path could be in terms of path length (number of edges between vertices e.g. a direct flight has path length 1, flights with connecting flights have path length > 1 –the shortest path could be in terms of minimum weight for weighted graphs (example on the board.)‏ e.g. finding the lowest cost flights Dijkstra's algorithm solves this problem

Graphs the shortest path could be in terms of path length (number of edges between vertices) e.g. a direct flight has path length 1, flights with connecting flights have path length > 1 –Initialize all lengths to infinity –Can process the graph in a BFS starting at the given vertex –When visit a node, replace it's length with the current length. –The BFS uses a queue. –Let's implement this.