Reinisch_ASD_85.5151 Chapter 2. Basic Conservation Laws x0x0 y0y0 z0z0 z y x U(x,y,z,t) mass element.

Slides:



Advertisements
Similar presentations
by Sylvie Malardel (room 10a; ext. 2414)
Advertisements

ECMWF Governing Equations 1 Slide 1 Governing Equations I by Clive Temperton (room 124) and Nils Wedi (room 128)
The mathematics of weather and climate Dr Emily Shuckburgh.
Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
The Quasi-Geostrophic Omega Equation (without friction and diabatic terms) We will now develop the Trenberth (1978)* modification to the QG Omega equation.
Navier-Stokes.
AOSS 321, Winter 2009 Earth System Dynamics Lecture 10 2/10/2008 Christiane Jablonowski Eric Hetland
1 MAE 5130: VISCOUS FLOWS Lecture 3: Kinematic Properties August 24, 2010 Mechanical and Aerospace Engineering Department Florida Institute of Technology.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 2 “The atmosphere (II)” Dr. Eugene Cordero San Jose State University.
Reinisch_ASD_ Vorticity in terms of horizontal circulation.
Physics 681: Solar Physics and Instrumentation – Lecture 13 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
1. The horizontal equations of motion: smaller-scale motion 2. The vertical equation of motion 3. The thermal wind ATOC 4720 class34.
AOSS 321, Winter 2009 Earth System Dynamics Lecture 11 2/12/2009 Christiane Jablonowski Eric Hetland
Chapter 1. Introduction 1.1 Atmospheric Continuum –Continuous fluid medium –“mass point” = air parcel (or air particle) –Field variables: p, , T and their.
AOSS 321, Winter 2009 Earth Systems Dynamics Lecture 13 2/19/2009 Christiane Jablonowski Eric Hetland
The General Circulation of the Atmosphere Background and Theory.
* Reading Assignments:
Instructor: André Bakker
Presentation Slides for Chapter 5 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering.
AOSS 401, Fall 2006 Lecture 8 September 24, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
AOSS 401, Fall 2007 Lecture 24 November 07, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic “Lapse Rates” Convective Motions.
Basic dynamics  The equations of motion and continuity Scaling Hydrostatic relation Boussinesq approximation  Geostrophic balance in ocean’s interior.
AOE 5104 Class 7 Online presentations for next class: Homework 3
Atmospheric Moisture Vapor pressure (e, Pa) The partial pressure exerted by the molecules of vapor in the air. Saturation vapor pressure (e s, Pa ) The.
Presentation Slides for Chapter 3 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering.
Conservation of mass If we imagine a volume of fluid in a basin, we can make a statement about the change in mass that might occur if we add or remove.
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS FILTERING OF EQUATIONS OF MOTION FOR ATMOSPHERE (CONT) LECTURE 7 (Reference: Peixoto & Oort, Chapter 3,7)
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS FILTERING OF EQUATIONS FOR ATMOSPHERE (CONT) LECTURE 6 (Reference: Peixoto & Oort, Chapter 3)
ATOC 4720: class Enthalpy 1. Enthalpy 2. Latent heat 2. Latent heat 3.Adiabatic processes 3.Adiabatic processes.
Richard Rotunno National Center for Atmospheric Research, USA Fluid Dynamics for Coastal Meteorology.
EART 160: Planetary Science 20 February Last Time Elastic Flexure Paper Discussion – Titan Atmosphere –Tobie et al., 2005 Planetary Atmospheres.
AOSS 401, Fall 2007 Lecture 6 September 19, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
AOSS 401, Fall 2006 Lecture 9 September 26, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Basic dynamics ●The equations of motion and continuity Scaling
Space Science: Atmospheres Part- 8
Fluid dynamical equations (Navier-Stokes equations)
Section 8 Vertical Circulation at Fronts
Richard Rotunno National Center for Atmospheric Research, USA Dynamical Mesoscale Mountain Meteorology.
AOSS 401, Fall 2007 Lecture 21 October 31, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Basic dynamics ●The equations of motion and continuity Scaling Hydrostatic relation Boussinesq approximation ●Geostrophic balance in ocean’s interior.
Basic dynamics The equation of motion Scale Analysis
Lecture 12 Stellar structure equations. Convection A bubble of gas that is lower density than its surroundings will rise buoyantly  From the ideal gas.
1. Integral vs Differential Approach
ATS/ESS 452: Synoptic Meteorology Friday 08 January 2016 Review Material Overview of Maps Equations of Motion Advection Continuity.
1.Fundamental equations and concepts 2.Balanced flow and vortex motion 3.Waves 4.Instabilities 5.Nonlinear phenomena An Introduction to Geophysical Fluid.
The dynamics of planetary atmospheres
Physics 111 Lecture Summaries (Serway 8 th Edition): Lecture 1Chapter 1&3Measurement & Vectors Lecture 2 Chapter 2Motion in 1 Dimension (Kinematics) Lecture.
Vertical Motion and Temperature Rising air expands, using energy to push outward against its environment, adiabatically cooling the air A parcel of air.
Atmospheric Dynamics Suzanne Gray (University of Reading) With thanks to Alan Gadian and Geraint Vaughan. Basic dynamical concepts.
ATS/ESS 452: Synoptic Meteorology Wednesday 09/10/2014 Quiz! (Short?) Weather Discussion Continue Review Material Geostrophic Wind Continuity Vorticity.
AOSS 401, Fall 2006 Lecture 7 September 21, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Surface LH, SH, and momentum drag are determined by turbulent transport near the surface.
Climate Modeling Theory - 1
Temperature Advection
Equations of motion in a local cartesian reference frame
This is a trivial result:
Damped Inertial oscillations
ATS/ESS 452: Synoptic Meteorology
Dynamical Balance in the Earth’s Atmosphere
ATOC 4720 class32 1. Forces 2. The horizontal equation of motion.
AOSS 321, Winter 2009 Earth System Dynamics Lecture 11 2/12/2009
ATOC 4720 class35 1. The thermodynamic energy equation
Week 4: Fluid dynamics principles Tally’s book, chapter 7
Conservation of Momentum (horizontal)
Richard B. Rood (Room 2525, SRB)
AOSS 401, Fall 2013 Lecture 4 Material Derivative September 12, 2013
Richard B. Rood (Room 2525, SRB)
Fundamental Eqs for modeling clouds
Charney (1948): On the Scale of Atmospheric Motions
Presentation transcript:

Reinisch_ASD_ Chapter 2. Basic Conservation Laws x0x0 y0y0 z0z0 z y x U(x,y,z,t) mass element

Reinisch_ASD_ Total Differentiation ( in the Lagrangian frame)

Reinisch_ASD_ Local Temperature Change and Temperature Advection

Reinisch_ASD_ Example for Advection p East x West p(x) 180 km 300 Pa u=10km/h

Reinisch_ASD_ Total Differentiation of a Vector in a Rotating System

Reinisch_ASD_ Rotation i i’ i’ k  j

Reinisch_ASD_ Rotating Coordinate System

Reinisch_ASD_ Momentum Equation in a Rotating Coordinate System

Reinisch_ASD_ Absolute Derivation of U a

Reinisch_ASD_ Acceleration in Rotating Frame

Reinisch_ASD_ Using Spherical Coordinates  i k j R r  U

Reinisch_ASD_ cont’d

Reinisch_ASD_ cont’d

Reinisch_ASD_ Components of DU/Dt

Reinisch_ASD_ Scale Analysis (horizontal components)

Reinisch_ASD_ Geostrophic Approximation

Reinisch_ASD_ Rossby Number

Reinisch_ASD_ Hydrostatic Approximation

Reinisch_ASD_ The Continuity Equation Eulerian Derivation x y z xx yy zz x0x0 y0y0 z0z0

Reinisch_ASD_ Eulerian Derivation

Reinisch_ASD_ Eulerian Derivation

Reinisch_ASD_ Lagrangian Derivation

Reinisch_ASD_ Lagrangian Derivation xAxA xBxB UAUA UBUB x

Reinisch_ASD_ Lagrangian Derivation

Reinisch_ASD_ Scale Analysis of the Continuity Equation

Reinisch_ASD_ Scale Analysis

Reinisch_ASD_ Energy Conservation

Reinisch_ASD_ Rate of Change of Energy

Reinisch_ASD_ Rate of Work Done

Reinisch_ASD_

Reinisch_ASD_ Thermal Energy Equation

Reinisch_ASD_ Thermodynamic Energy Equation

Reinisch_ASD_ Thermodynamics of the Dry Atmosphere

Reinisch_ASD_ Potential Temperature

Reinisch_ASD_ Adiabatic Lapse Rate

Reinisch_ASD_ Static Stability

Reinisch_ASD_ Buoyancy Oscillations

Reinisch_ASD_ Buoyancy …