Tölvunarfræði Vikublað 10. Einkunnargjöf Dæmi 1 - 4stig Dæmi 2 - 0stig Dæmi 3 - 4stig Dæmi 4 - 0stig Dæmi 5 - 4stig.

Slides:



Advertisements
Similar presentations
RSA COSC 201 ST. MARY’S COLLEGE OF MARYLAND FALL 2012 RSA.
Advertisements

IS 302: Information Security and Trust Week 4: Asymmetric Encryption
CS 483 – SD SECTION BY DR. DANIYAL ALGHAZZAWI (4) Information Security.
Línuleg bestun Hámörkun, dæmi Lágmörkun, dæmi
Public Key Cryptosystems - RSA Receiver Sender Eavesdroppe r p q p q p q p and q prime.
Data encryption with big prime numbers
Public Key Encryption Algorithm
YSLInformation Security -- Public-Key Cryptography1 Elliptic Curve Cryptography (ECC) For the same length of keys, faster than RSA For the same degree.
RSA ( Rivest, Shamir, Adleman) Public Key Cryptosystem
©2001 Þórdís Hrefna Ólafsdótttir
Fervikagreining (ANOVA) ANOVA = ANalysis Of Variance “Greining á heildarbreytileika í safni athugana eftir breytileikavöldum” One-way ANOVA er notað til.
Líkamstjáning mannsins Þróun mannsins Kolbrún Franklín.
Ágúst 2006 © Þóra Björk Jónsdóttir 2 Ég fékk C fyrir víravirkið mitt !? Má ég koma með spurningu? Hvernig getur maður fengið C fyrir víravirki? Er það.
21/06/2015Dr Andy Brooks1 Fyrirlestur 5 Java Applets/Java smáforrit og Kafli 3.3 Linear Regression/Jafna Bestu Línu TFG0152 Tölfræði.
Normaldreifing  Graf sérhverrar normaldreifingar er bjöllulaga.
Public Key Cryptography
Berglind Eyjólfsdóttir, rannsóknarlögreglumaður. Hvernig eru fórnalömb mansals? Staðalímynd Hvernig sjáum við fyrir okkur fórnalamb mansals? Hver er raunin.
Tölvunarfræði Kraftbendilsglærur Vikublað 12. Dæmi 1a.
Cryptography & Number Theory
Chapter 3 Encryption Algorithms & Systems (Part C)
CSCI 172/283 Fall 2010 Public Key Cryptography. New paradigm introduced by Diffie and Hellman The mailbox analogy: Bob has a locked mailbox Alice can.
Tallinn University of Technology Quantum computer impact on public key cryptography Roman Stepanenko.
RSA Encryption Caitlin O’Dwyer. What is an RSA Number? An RSA number n is a number s.t. n=pq Where p and q are distinct, large, prime integers.
“RSA”. RSA  by Rivest, Shamir & Adleman of MIT in 1977  best known & widely used public-key scheme  RSA is a block cipher, plain & cipher text are.
Codes, Ciphers, and Cryptography-RSA Encryption
 Introduction  Requirements for RSA  Ingredients for RSA  RSA Algorithm  RSA Example  Problems on RSA.
RSA Numbers by: Brandon Hacay & Conrad Allen. History of RSA Numbers The letters in “RSA” are simply the initials of the people who are credited as having.
Introduction to Modular Arithmetic and Public Key Cryptography.
1 Network Security Lecture 6 Public Key Algorithms Waleed Ejaz
HW6 due tomorrow Teams T will get to pick their presentation day in the order Teams T will get to pick their presentation day in the order Teams mostly.
10/1/2015 9:38:06 AM1AIIS. OUTLINE Introduction Goals In Cryptography Secrete Key Cryptography Public Key Cryptograpgy Digital Signatures 2 10/1/2015.
1 Lecture 9 Public Key Cryptography Public Key Algorithms CIS CIS 5357 Network Security.
Public-Key Cryptography CS110 Fall Conventional Encryption.
Improving Encryption Algorithms Betty Huang Computer Systems Lab
Darci Miyashiro Math 480 April 29, 2013
Public-Key Encryption
RSA Public Key Crypto System. About RSA Announced in 1977 by Ronald Rivest, Adi Shamir, and Leonard Adleman Relies on the relative ease of finding large.
What is RSA RSA is a system employed to create the encrypted message in which the key used for encryption is different from that used to decrypt. It is.
Public Key (RSA) Day 27. Objective Students will be able to… …understand how RSA is used for encryption and decryption. …understand some of the challenges.
RSA Slides by Kent Seamons and Tim van der Horst Last Updated: Oct 1, 2013.
CSC 386 – Computer Security Scott Heggen. Agenda Exploring that locked box thing from Friday?
Algebra of RSA codes Yinduo Ma Tong Li. Ron Rivest, Adi Shamir and Leonard Adleman.
The RSA Algorithm. Content Review of Encryption RSA An RSA example.
PUBLIC KEY CRYPTOGRAPHY ALGORITHM Concept and Example 1IT352 | Network Security |Najwa AlGhamdi.
24-Nov-15Security Cryptography Cryptography is the science and art of transforming messages to make them secure and immune to attacks. It involves plaintext,
1 A Steganographic Scheme for Secure Communications Based on the Chaos and Eular Theorem Der-Chyuan Lou and Chia-Hung Sung IEEE Transactions on Multimedia,
A A E E D D C C B B # Symmetric Keys = n*(n-1)/2 F F
Ln Lou Modern Cyphers. 0. Security System Key Plain Text Cipher Text Encryption (K × P → C) Decryption (K × C → P)
RSA The algorithm was publicly described in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT Partly used for PGP (Pretty Good Privacy) to encrypt.
1 Section Congruences In short, a congruence relation is an equivalence relation on the carrier of an algebra such that the operations of the algebra.
Chapter 8 Estimation Mat og metlar ©. Estimator and Estimate Metill og mat estimator estimate An estimator of a population parameter is a random variable.
Public Key Cryptography 2 RSA. Lemma 1 Let s and t be relatively prime. Then Proof: Let be given by First we show that  actually maps Then we show 
Encryption on the Internet Jeff Cohen. Keeping Information Secret What information do we want to be secret? –Credit card number –Social security number.
Lecture 3 (Chapter 9) Public-Key Cryptography and RSA Prepared by Dr. Lamiaa M. Elshenawy 1.
Data encryption with big prime numbers DANIEL FREEMAN, SLU.
Breaking Cryptosystems Joshua Langford University of Texas at Tyler Fall 2007 Advisor: Dr. Ramona Ranalli Alger.
CS/COE 1501 Recitation RSA Encryption/Decryption Extended Euclidean Algorithm Digital Signatures.
Information and Computer Security CPIS 312 Lab 8 1 Asymmetric Key Algorithms RSA Algorithm TRIGUI Mohamed Salim.
RSA Algorithm Date: 96/10/17 Wun-Long Yang. Outline Introduction to RSA algorithm RSA efficient implementation & profiling.
RSA cryptosystem with large key length
Public Key Cryptography
Rivest, Shamir and Adleman
Analysis of the RSA Encryption Algorithm
FYLGJUMST MEÐ ! MSN spjallið Um hvað eru krakkarnir að spjalla ?
FYLGJUMST MEÐ ! MSN spjallið Um hvað eru krakkarnir að spjalla ?
Hypothesis Testing Kenningapróf
KÆL 102 Á heimasíðu danfoss
Nonparametric Statistics Tölfræði sem ekki byggir á mati stika
Nonparametric Statistics Tölfræði sem ekki byggir á mati stika
Presentation transcript:

Tölvunarfræði Vikublað 10

Einkunnargjöf Dæmi 1 - 4stig Dæmi 2 - 0stig Dæmi 3 - 4stig Dæmi 4 - 0stig Dæmi 5 - 4stig

Dæmi 1 – a A = [4 2 1; 2 4 2; 1 2 4]; B = [ ; ; ]; x = [ 1; 2; 3]; y = [3 3 3];

Dæmi 1 - B A*B A*x [1 x 3]*[3 x 1] = [1 x 1]

Dæmi 1 - C x*y x*y’ Gefur villu! x’*y Gefur villu! x ’* y ’ dot( x,y )

Dæmi 1 - D det (A) inv (A) inv ( eye (3) −A*B*B’*A’ ) +( x*y )’

(Dæmi 3.5 í bók Kristjáns) Lát A vera eins og í dæmi 3.4 og d = [3, 2, 1]T. Skrifið Matlabfall sem kallar á fallið í sýnidæmi 8 á blaðsíðu 34 og notar það til að reikna gildi fallsins f (x) = exp(3(x − d)TA(x − d).

Lausn v35.m function b = v35( x ) A = [4 2 1; 2 4 2; 1 2 4]; d = [ 3; 2; 1]; b = exp(3*(x−d)’*A*(x−d));

Dæmi 3 - TaylorSin

function S = taylorSin(x,n) S = x; l = x; for k=3:2:2*n-1 l = l*(-x^2 )/((k-1)*k); S = S+l; end

Dæmi 5 Höfum RCL rás þar sem finna á samviðnám rásar. Samviðnám spólu er jωL, samviðnám þéttis er og samviðnám viðnáms er einfaldlega R. Hliðtenging tveggja íhluta er gefin með

Dæmi 5 Raðtenging fæst með samlagningu, eða zs = z1 + z2. Enn fremur er ω horntíðni rásar. Einu upplýsingarnar sem skipta máli í b-lið eru síðustu jöfnurnar í dæminu, við þurfum bara að reikna I0 = V0/|z| og θ = \z.

Lausn a-liður w=3000; b1=3e3 + i *w* 0.5 b2=−i / (w* 0.2e−6) a=b1* b2 / ( b1+b2 ) z = a + 1e3

Lausn b-liður V0=5; Theta = angle( z ) I0=V0 / abs ( z )

Næsta verkefni RSA – dulritun n = pq Public Key Private Key

The public key is (n = 3233, e = 17). For a padded message the encryption function is:. The private key is (n = 3233, d = 2753). The decryption function is:. For example, to encrypt m = 123, we calculate To decrypt c = 855, we calculate. 1.Choose two prime numbers p = 61 and q = 53 2.Compute n = 61 * 53 = Compute the totient φ(n) = (61 − 1)(53 − 1) = Choose e > 1 coprime to 3120 e = 17 5.Choose to satisfy d = * 2753 = = * 3120.