何汉新( Han-Xin He ) 中国原子能科学研究院 China Institute of Atomic Energy Quark Confinement Dynamics.

Slides:



Advertisements
Similar presentations
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Coulomb energy, remnant symmetry in Coulomb gauge, and phases of.
Advertisements

The Phase Diagram of Nuclear Matter Oumarou Njoya.
Chiral freedom and the scale of weak interactions.
J. Hošek, in “Strong Coupling Gauge Theories in LHC Era”, World Scientific 2011 (arXiv: ) P. Beneš, J. Hošek, A. Smetana, arXiv: A.
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
Gerard ’t Hooft Spinoza Institute Utrecht, the Netherlands Utrecht University.
3rd International Workshop On High Energy Physics In The LHC Era.
Functional renormalization – concepts and prospects.
Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)
核色动力学导论 --- 用量子色动力学描绘 现代核物理的蓝图 何汉新 中国原子能科学研究院. An Introduction to Nuclear QCD -- QCD and its applications to the systems of nucleon and nuclear structure.
Chiral freedom and the scale of weak interactions.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Chiral freedom and the scale of weak interactions.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Color confinement mechanism and the type of the QCD vacuum Tsuneo Suzuki (Kanazawa Univ.) Collaborators: K.Ishiguro, Y.Mori, Y.Nakamura, T.Sekido ( M.Polikarpov,
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
P Spring 2002 L14Richard Kass Quantum Chromodynamics Quantum Chromodynamics (QCD) is the theory of the strong interaction. QCD is a non-abelian gauge.
Poincare sub-algebra and gauge invariance in nucleon structure Xiang-Song Chen Huazhong University of Science & Technology 陈相松 华中科技大学 武汉 10 July
QCD Thermodynamics Jean-Paul Blaizot, CNRS and ECT* RHIC Physics in the Context of the Standard Model RBRC June 21,
School of Arts & Sciences Dean’s Coffee Presentation SUNY Institute of Technology, February 4, 2005 High Energy Physics: An Overview of Objectives, Challenges.
On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia Contents.
Quark Correlations and Single Spin Asymmetry Quark Correlations and Single Spin Asymmetry G. Musulmanbekov JINR, Dubna, Russia Contents.
QCD 与强子物理研讨会, 2010 年 8 月 4 - 10 日,威海 Prospects of Flavor Physics at the LHC 高原宁 清华大学高能物理研究中心 2010/8/61Y. Gao, Prospects of flavor physics at the LHC.
格子QCDシミュレーションによる QGP媒質中のクォーク間ポテンシャルの研究
1 Topical Seminar on Frontier of Particle Physics 2004: QCD and Light Hadrons Lecture 1 Wei Zhu East China Normal University.
Lagrangian of QED: 8 9 fine-structure constant =
Mesons and Glueballs September 23, 2009 By Hanna Renkema.
Analytical derivation of gauge fields from link variables in SU(3) lattice QCD and its application in Maximally Abelian gauge S.Gongyo(Kyoto Univ.) T.Iritani,
Non-equilibrium critical phenomena in the chiral phase transition 1.Introduction 2.Review : Dynamic critical phenomena 3.Propagating mode in the O(N) model.
1 Noncommutative QCDCorrections to the Gluonic Decays of Heavy Quarkonia Stefano Di Chiara A. Devoto, S. Di Chiara, W. W. Repko, Phys. Lett. B 588, 85.
Static interquark potentials from lattice QCD Toru T. Takahashi (Gunma College of Technology)
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Reinterpretation of Skyrme Theory Y. M. Cho Seoul National Univ.
Infrared gluons in the stochastic quantization approach Lattice20081 Contents 1.Introduction 2.Method: Stochastic gauge fixing 3.Gluon propagators 4.Numerical.
Instanton-induced contributions to hadronic form factors. Pietro Faccioli Universita’ degli Studi di Trento, I.N.F.N., Gruppo Collegato di Trento, E.C.T.*
Hadrons: color singlets “white states”
Quarknet Syracuse Summer Institute Strong and EM forces 1.
Color glass condensate in dense quark matter and off-diagonal long range order of gluons A. Iwazaki (Nishogakusha-u) Success of an effective theory of.
Threshold Resummation for Top- Quark Pair Production at ILC J.P. Ma ITP, CAS, Beijing 2005 年直线对撞机国际研讨会, Tsinghua Univ.
Nucleon and Roper on the Lattice Y. Chen Institute of High Energy Physics, CAS, China Collaborating with S.J. Dong, T. Draper, I. Horvath, F.X. Lee, K.F.
SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL G. Musulmanbekov JINR, Dubna, Russia
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Holographic QCD in the medium
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
HIM06-12 SHLee1 Some Topics in Relativistic Heavy Ion Collision Su Houng Lee Yonsei Univ., Korea 1.J. P. Blaizot 2.J. Kapusta 3.U. A. Wiedemann.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
関戸 暢 石黒克也、森祥寛、中村宜文、鈴木恒雄 Kanazawa-univ & RIKEN 共同研究者 Kanazawa-univ & RIKEN Gauge invariance of the dual Meissner effect in pure SU(2) QCD.
Quarkonium Dissociation Temperature in Hot QCD medium within a quasi-particle model.
ab initio Chemistry ab initio QCD = flops  10 Mflops
NGB and their parameters
mesons as probes to explore the chiral symmetry in nuclear matter
Construction of a relativistic field theory
张仁友 (南昌, ) 中国科学技术大学粒子物理与技术中心
Adnan Bashir, UMSNH, Mexico
B physics at hadron collider
Lecture 2: Invariants, cross-section, Feynman diagrams
HP-SEE DISSEMINATION & TRAINING Tirana, 27 March 2012
Heavy-to-light transitions on the light cone
Yukawa Institute for Theoretical Physics
Presentation transcript:

何汉新( Han-Xin He ) 中国原子能科学研究院 China Institute of Atomic Energy Quark Confinement Dynamics

OUTLINES 1.Introduction Quark-gluon color confinement Gauge symmetries and QCD Interactions 2. Transverse symmetry transformations in gauge theories 3. Transverse Ward-Takahashi relations in QED 4. Full fermion-boson vertex function in QED 5. Transverse symmetry transformation and full quark-gluon interaction vertex function

1. Introduction Quark-gluon color confinement (1) Confinement mechanism — A dual Meissner effect in a condensate of magnetic monopoles — Hard to prove from QCD (2) Quark-gluon color confinement dynamics Lattice QCD simulations — A linear confinement potential when quark – (anti)quark distance is less than about 1 fm — String breaking when q-q(anti-quark) distance is larger than 1.1 fm, leading a screen potential — The dynamic mechanics is still not clear

QCD Green’s functions infrared behaviors and color confinement — Gluon propagator: nearly infrared vanishing — Ghost propagator: a strongly infrared enhancing — To generate a linear arising potential, the quark-quark vertex must be infrared singularity Problem: how to give the full quark-gluon vertex? — Only way is to use gauge symmetries in QCD

Gauge symmetries --Global: current conservation --Local: Ward-Takahashi relations in QED Slavnov-Taylor relations in QCD ---Play an essential role in demonstrating the renormalizabilities of gauge theories ---Play the important role in nonperturbative study of gauge theories The quark-gluon vertex ---is essential for understanding the dynamics of confinement and dynamical chiral symmetry breaking ---plays a key role in bridging color-quarks and gluons and their colorless bound states (hadrons)

2,Transverse Symmetry Transformations in Gauge Theories

Physics meaning of the transverse symmetry transformation The transformation (6) defines a symmetry transformation where the change of variable is along the symmetry direction The transverse symmetry tranformation (7) transforms the original symmetry direction, by the infinitesimal Lorentz transformation (8), to its tansverse direction. This is why we call the transformation (7) with definition (8) as the transverse symmetry transformation.

3,Transverse Symmetry Transformation in Abelian Theory QED We write the transverse symmetry transformation in QED by definition (8)

4. Full Fermion-Boson Vertex Function in QED

5. Transverse Symmetry Transformation in QCD –BRST transformationTransverse symmetry transformation for BRST symmetry

Full Quark-Gluon Vertex Function

6. Outlook