Rol Johnson 6/28/2005 MICE/MANX 1 MANX: a 6D Cooling Demonstration Experiment Rolland P. Johnson MANX: a 6D Cooling Demonstration Experiment Rolland P.

Slides:



Advertisements
Similar presentations
Feb 12, 2008 TJRProspects for a Muon Collider1 Prospects for an Energy- Frontier Muon Collider Tom Roberts Muons, Inc. Illinois Institute of Technology.
Advertisements

Beam Test of a High-Pressure GH 2 -Filled RF Cavity (for efficient muon beam cooling for a MC or NF, since the low-Z ionization energy-loss absorber and.
MUTAC06: Muons, Inc. projects 1 Muons, Inc. Grants and Proposals Rolland Johnson, Muons, Inc. Muons, Inc. Grants and Proposals Rolland Johnson, Muons,
12/20/ minutes on 11 projects 1 Muons, Inc. Grants and Proposals Rolland Johnson, Muons, Inc. Muons, Inc. Grants and Proposals Rolland Johnson,
8/12/2002 Bob/RolAbsorber Review/GH2 status1 Gaseous H 2 Absorber Status IIT and Muons, Inc. Chuck Ankenbrandt, Ed Black, Kevin Cassel, Bob Hartline, Rol.
Muon Coalescing 101 Chuck Ankenbrandt Chandra Bhat Milorad Popovic Fermilab NFMCC IIT March 14, 2006.
12/5/2008NuMu Collaboration Friday Meeting 1 Status Report on MANX Proposal Draft Bob Abrams Muons, Inc.
Muons, Inc. June 9, 2006MICE CM151 6D MANX A Muon Cooling Demonstration Experiment; How it might fit within MICE. Tom Roberts Muons, Inc.
Practical design of helical cooling channel Katsuya Yonehara APC, Fermilab 2/28/11 - 3/04/11 1.
Bunched-Beam Phase Rotation- Variation and 0ptimization David Neuffer, A. Poklonskiy Fermilab.
RF Bucket Area Introduction Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced.
2/7/2002 RolMUCOOL/MICE1 20b. Gaseous Energy Absorber, 21a. High Pressure RF Cavities New Money for New Approaches DOE Small Business Innovation Research.
July 28, 2004K. Yonehara, NuFact'04 Osaka1 High pressure RF cavities for muon beam cooling Katsuya Yonehara Illinois Institute of Technology NuFact04 in.
Simulation Study Results Study: Replace LiH-based cooler with gas-filled transport and rf cavities Results: Beam Cooling is significantly improved. Final.
Rol - July 21, 2009 NuFact09 1 Muon Cooling for a Neutrino Factory Rolland P. Johnson Muons, Inc. ( More.
Muons, Inc. MANX Update: MANX Following MICE at RAL MICE cm 23 – January 14, 2008 Richard Sah.
-Factory Front End Phase Rotation Optimization David Neuffer Fermilab Muons, Inc.
Helical Cooling Channel Simulation with ICOOL and G4BL K. Yonehara Muon collider meeting, Miami Dec. 13, 2004 Slide 1.
February 24, 2007MICE CM171 6D MANX A Muon Cooling Demonstration Experiment; How it might fit with MICE. Tom Roberts Muons, Inc.
04/28/04MUTAC BNL1 Muons, Inc. Status: Six SBIR/STTR Muon Projects Rolland Johnson, April 28, 2004 HP HG GH2 RF –Ph II, w IIT, DK 6D Cooling on Helix –Ph.
Feb 15, 2008S. Kahn -- RF in HCC Channel1 Examination of How to Put RF into the HCC Steve Kahn Katsuya Yonehara NFMCC Meeting Feb 15, 2008 Muons, Inc.
Fast TOF for Muon Cooling Experiments Robert Abrams Muons, inc.
Institutional Logo Here Harold G. Kirk DOE Review of MAP (FNAL August 29-31, 2012)1 The Front End Harold Kirk Brookhaven National Lab August 30, 2012.
Muons, Inc. AAC Feb M. A. C. Cummings 1 Uses of the HCC Mary Anne Cummings February 4, 2009 Fermilab AAC.
Rol 5/16/2006 Good Intentions 1 Letter of Intent to propose a SIX-DIMENSIONAL MUON BEAM COOLING EXPERIMENT FOR FERMILAB Ramesh Gupta, Erich Willen Brookhaven.
Mar 19, 2008 S. Kahn -- RF in HCC Channel 1 Examination of How to Put RF into the HCC Steve Kahn NFMCC Meeting Mar 19, 2008.
Rol -12/03/2007 BNL MC 2007 workshop 1 LEMC Scenario (More of a Goal) Muons, Inc. Rolland Johnson, Muons, Inc.
The 2010 NFMCC Collaboration Meeting University of Mississippi, January 13-16, Update on Parametric-resonance Ionization Cooling (PIC) V.S. Morozov.
Rol - Oct 23, 2007 Cosener's NFMC TW 1 Helical Cooling Channels (and related items) Rolland P. Johnson Muons, Inc. Please visit "Papers and Reports" and.
Rol - Feb. 3, 2009 AAC Meeting 1 MANX- Toward Bright Muon Beams for Colliders, Neutrino Factories, and Muon Physics Rolland P. Johnson Muons, Inc. (
Rol - Feb. 3, 2009 AAC Meeting 1 MANX- Toward Bright Muon Beams for Colliders, Neutrino Factories, and Muon Physics Rolland P. Johnson Muons, Inc. (
Rol -2/15/2007 2nd Annual LEMC workshop 1 2 nd annual Low Emittance Muon Collider workshop: Progress and Issues Muons, Inc. Rolland Johnson, Muons, Inc.
12/11/2008Muon Collider Design Workshop at Newport News, VA USA 1 MANX Proposal Bob Abrams Muons, Inc.
Thomas Jefferson National Accelerator Facility Page 1 Muons, Inc. Epicyclic Helical Channels for Parametric-resonance Ionization Cooling Andrei Afanasev,
1 Muon Collider/Higgs Factory A. Caldwell Columbia University Motivation Difficulties Focus on Cooling (frictional cooling)
Rol - 8/8/2007 AAC MANX Intro 1 Introduction: Low Emittance Muon Collider, New 6D Cooling Ideas, and MANX Rol Johnson Muons, Inc.
Rol Johnson 7/22/2005 JLab Seminar 1 Recent Innovations in Muon Beam Cooling and Prospects for Muon Colliders and Neutrino Factories Rolland P. Johnson.
Thomas Jefferson National Accelerator Facility Page 1 Muons, Inc. HCC theory Yaroslav Derbenev, JLab Rolland P. Johnson, Muons, Inc Andrei Afanasev, Hampton.
V.Balbekov, 12/09/08 HCC simulation with wedge absorbers V. Balbekov, Fermilab Muon Collider Design Workshop December 8-12, 2008 JeffersonLab, Newport.
Rol Johnson 6/22/2005 NuFact05 Plenary 1 Technical Challenges of Muon Colliders Rolland P. Johnson Technical Challenges of Muon Colliders Rolland P. Johnson.
Rol Johnson 6/21/2005 NuFact05 WG3 1 Comparing Neutrino Factory and Muon Collider Beam Cooling Requirements Rolland P. Johnson Comparing Neutrino Factory.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
1 International Design Study Front End & Variations David Neuffer January 2009.
MICE at STFC-RAL The International Muon Ionization Cooling Experiment -- Design, engineer and build a section of cooling channel capable of giving the.
Rol 8/29/2006 NuFact06 1 A Shared Superconducting Linac for Protons and Muons Advances in muon cooling imply that a muon beam can be accelerated in high-frequency.
Rol -4/08/2008 MUTAC LBNL 1 Muons, Inc. Update SBIR-STTR funding requires innovations Necessarily “out of the box” Options we investigate are projects.
Updated 04/26/05MUTAC1 SBIR/STTR Beam Cooling Projects BNL, FNAL, IIT, Jlab, Muons, Inc. Rolland Johnson, updated April 26, 2005 GH 2 RF cavitiesIIT, Kaplan.
Recent progress of RF cavity study at Mucool Test Area Katsuya Yonehara APC, Fermilab 1.
Ionization Cooling for a ν-Factory or     Collider David Neuffer Fermilab 7/15/06.
Institutional Logo Here July 11, 2012 Muon Accelerator Program Advisory Committee Review (FNAL July 11-13, 2012)1 The Front End.
Ionization Cooling for a     Collider David Neuffer Fermilab 7/15/06.
MANX and Muon collider progress Katsuya Yonehara Fermi National Accelerator Lab DPF2006, Honolulu, Hawai’i October 30 th, 2006.
K. Paul – NFMC Collaboration Meeting – March 14, 2006 – Slide 1 HIGHLIGHTS ( K. Paul Muons, Inc.
Basic of muon ionization cooling K. Yonehara 8/29/11HPRF cavity physics seminar - I, K. Yonehara1.
Progress of high pressure hydrogen gas filled RF cavity K. Yonehara APC, Fermilab 11/02/111 Joint MAP & High Gradient RF Workshop, K. Yonehara.
Katsuya Yonehara Accelerator Physics Center, Fermilab On behalf of the Muon Accelerator Program 5/22/121International Particle Accelerator Conference,
Milorad Popovic On behalf of helical cooling channel design group (Katsuya Yonehara) Accelerator Physics Center, Fermilab 8/10/13NuFact 13, M. Popovic1.
Jun 13, 2008 Synergy ‘08 MANX, a 6-D Muon Cooling Experiment MACC Muons, Inc.
August 8, 2007 AAC'07 K. Yonehara 1 Cooling simulations for Muon Collider and 6DMANX Katsuya Yonehara Fermilab APC MCTF.
Muons, Inc. Feb Yonehara-AAC AAC Meeting Design of the MANX experiment Katsuya Yonehara Fermilab APC February 4, 2009.
Research and development toward a future Muon Collider Katsuya Yonehara Accelerator Physics Center, Fermilab On behalf of Muon Accelerator Program Draft.
Uses of the HCC Mary Anne Cummings February 4, 2009 Fermilab AAC
Rolland Johnson, Muons, Inc.
Prospects for an Energy-Frontier Muon Collider
Parametric Resonance Ionization Cooling of Muons
m MANX- Toward Bright Muon Beams
HCC theory Yaroslav Derbenev, JLab Rolland P. Johnson, Muons, Inc
M Muons, Inc. Comparing Neutrino Factory and Muon Collider Beam Cooling Requirements Rolland P. Johnson Neutrino Factories need a large muon flux to produce.
Design of the MANX experiment
Uses of the HCC Mary Anne Cummings February 4, 2009 Fermilab AAC
Presentation transcript:

Rol Johnson 6/28/2005 MICE/MANX 1 MANX: a 6D Cooling Demonstration Experiment Rolland P. Johnson MANX: a 6D Cooling Demonstration Experiment Rolland P. Johnson Muons, Inc. Muon collider And Neutrino factory eXperiment

Rol Johnson 6/28/2005 MICE/MANX 2 6D demonstration muon beam cooling experiments at RAL Muon Colliders need small muon flux to reduce proton driver demands, detector backgrounds, and site boundary radiation levels. Extreme beam cooling is therefore required to produce high luminosity at the beam-beam tune shift limit and to allow the use of high frequency RF for acceleration to very high energy in recirculating Linacs. Muon Colliders need small muon flux to reduce proton driver demands, detector backgrounds, and site boundary radiation levels. Extreme beam cooling is therefore required to produce high luminosity at the beam-beam tune shift limit and to allow the use of high frequency RF for acceleration to very high energy in recirculating Linacs. A Neutrino Factory based on a very cool muon beam which is accelerated in an existing Linac may be a cost-effective alternative to present schemes that do not require cooling. A Neutrino Factory based on a very cool muon beam which is accelerated in an existing Linac may be a cost-effective alternative to present schemes that do not require cooling. We describe the essential ideas of the 6D cooling needed for these approaches and experiments to demonstrate their use. We describe the essential ideas of the 6D cooling needed for these approaches and experiments to demonstrate their use. We propose that MICE phase I become an R&D facility to test these and other ideas as yet unimagined. We propose that MICE phase I become an R&D facility to test these and other ideas as yet unimagined.

Rol Johnson 6/28/2005 MICE/MANX 3 Muons, Inc. SBIR/STTR Collaboration: (Small Business Innovation Research grants) Fermilab; Fermilab; Victor Yarba, Chuck Ankenbrandt, Emanuela Barzi, Licia del Frate, Ivan Gonin, Timer Khabiboulline, Al Moretti, Dave Neuffer*, Milorad Popovic*, Gennady Romanov, Daniele TurrioniVictor Yarba, Chuck Ankenbrandt, Emanuela Barzi, Licia del Frate, Ivan Gonin, Timer Khabiboulline, Al Moretti, Dave Neuffer*, Milorad Popovic*, Gennady Romanov, Daniele Turrioni IIT; IIT; Dan Kaplan*, Katsuya YoneharaDan Kaplan*, Katsuya Yonehara JLab; JLab; Slava Derbenev, Alex Bogacz*, Kevin Beard, Yu-Chiu ChaoSlava Derbenev, Alex Bogacz*, Kevin Beard, Yu-Chiu Chao Muons, Inc.; Muons, Inc.; Rolland Johnson*, Mohammad Alsharo’a, Pierrick Hanlet, Bob Hartline, Moyses Kuchnir, Kevin Paul*, Tom RobertsRolland Johnson*, Mohammad Alsharo’a, Pierrick Hanlet, Bob Hartline, Moyses Kuchnir, Kevin Paul*, Tom Roberts Underlined are 6 accelerator physicists in training, supported by SBIR/STTR grants Underlined are 6 accelerator physicists in training, supported by SBIR/STTR grants * present at these NuFact/MICE workshops * present at these NuFact/MICE workshops

Rol Johnson 6/28/2005 MICE/MANX 4 5 TeV     Modified Livingston Plot taken from: W. K. H. Panofsky and M. Breidenbach, Rev. Mod. Phys. 71, s121-s132 (1999) Muon Colliders: Back to the Livingston Plot

Rol Johnson 6/28/2005MICE/MANX5 5 TeV ~ SSC energy reach ~5 X 2.5 km footprint Affordable LC length, includes ILC people, ideas High L from small emittance! 1/10 fewer muons than originally imagined: a) easier p driver, targetry b) less detector background c) less site boundary radiation

Rol Johnson 6/28/2005MICE/MANX6 Muon Collider Emittances and Luminosities After: –Precooling –Basic HCC 6D –Parametric-resonance IC –Reverse Emittance Exchange ε N tr ε N long. 20,000µm10,000 µm 200 µm 100 µm 25 µm 100 µm 2µm 2 cm At 2.5 TeV 20 Hz Operation:

Rol Johnson 6/28/2005MICE/MANX7 Neutrinos from an 8 GeV SC Linac ~ 700m Active Length 8 GeV Linac Target and Muon Cooling Channel Recirculating Linac for Neutrino Factory Bunching Ring Muon cooling to reduce costs of a neutrino factory based on a Storage Ring. Cooling must be 6D to fit in 1.3 GHz SC RF, where the last 6.8 GeV of 8 GeV are β=1.

Rol Johnson 6/28/2005MICE/MANX8 Idea #1: RF Cavities with Pressurized H 2 Dense GH 2 suppresses high-voltage breakdown –Small MFP inhibits avalanches (Paschen’s Law) Gas acts as an energy absorber –Needed for ionization cooling Only works for muons –No strong interaction scattering like protons –More massive than electrons so no showers R. P. Johnson et al. invited talk at LINAC2004, Pierrick M. Hanlet et al., Studies of RF Breakdown of Metals in Dense Gases, PAC05 Kevin Paul et al., Simultaneous bunching and precooling muon beams with gas-filled RF cavities, PAC05 Mohammad Alsharo'a et al., Beryllium RF Windows for Gaseous Cavities for Muon Acceleration, PAC05 Also see WG3 talks by D. Cline, S. Kahn, and A. Klier on ring coolers for other use of ideas 1 and 2

Rol Johnson 6/28/2005MICE/MANX9 Lab G Results, Molybdenum Electrode Linear Paschen Gas Breakdown Region Metallic Surface Breakdown Region Waveguide Breakdown Hydrogen Helium Fast conditioning: 3 h from 70 to 80 MV/m

Rol Johnson 6/28/2005MICE/MANX10 Idea #2: Continuous Energy Absorber for Emittance Exchange and 6d Cooling Ionization Cooling is only transverse. To get 6D cooling, emittance exchange between transverse and longitudinal coordinates is needed. In figure 2, positive dispersion gives higher energy muons larger energy loss due to their longer path length in a low-Z absorber.

Rol Johnson 6/28/2005MICE/MANX11 Idea #3: six dimensional Cooling with HCC and continuous absorber Helical cooling channel (HCC) –Solenoidal plus transverse helical dipole and quadrupole fields –Helical dipoles known from Siberian Snakes – z-independent Hamiltonian Derbenev & Johnson, Theory of HCC, April/05 PRST-AB

Rol Johnson 6/28/2005MICE/MANX12 Photograph of a helical coil for the AGS Snake 11” diameter helical dipole: we want ~2.5 x larger bore

Rol Johnson 6/28/2005MICE/MANX13 Due to b Due to B Motion due to b + B Magnet coils Helical Cooling Channel. Derbenev invention of combination of Solenoidal and helical dipole fields for muon cooling with emittance exchange and large acceptance. Well-suited to continuous absorber.

Rol Johnson 6/28/2005MICE/MANX14 G4BL 10 m helical cooling channel RF Cavities displaced transversely 4 Cavities for each 1m-helix period B_=3.5 T =1.01 T B’_helical_quad=0.639 T/m B_solenoid=3.5 T B_helical_dipole=1.01 T B’_helical_quad=0.639 T/m

Rol Johnson 6/28/2005MICE/MANX15 G4BL End view of 200MeV HCC Radially offset RF cavities Beam particles (blue) oscillating about the periodic orbit (white)

Rol Johnson 6/28/2005MICE/MANX16 HCC simulations w/ GEANT4 (red) and ICOOL (blue) 6D Cooling factor ~5000 Katsuya Yonehara, et al., Simulations of a Gas-Filled Helical Cooling Channel, PAC05

Rol Johnson 6/28/2005MICE/MANX17 In a Helical Cooling Channel with period, the condition for a helical equilibrium orbit for a particle at radius a, momentum p, is: where is the arctan of the helix pitch angle and at the periodic orbit. The longitudinal cooling decrement is where HOWEVER we can use the equation above relating to manipulate the fields and helix parameters to maintain the orbit and dispersion properties. The next 2 ideas use this technique to cool when particles lose their energy in an absorber and there is no RF to regenerate the lost energy. Up to now, we have only considered constant field magnitudes, where the only the direction of b changes. This gives the z-independent Hamiltonian, etc.

Rol Johnson 6/28/2005MICE/MANX18 Idea #4: HCC with Z-dependent fields 40 m evacuated helical magnet pion decay channel followed by a 5 m liquid hydrogen HCC (no RF)

Rol Johnson 6/28/2005MICE/MANX19 5 m Precooler and MANX New Invention: HCC with fields that decrease with momentum. Here the beam decelerates in liquid hydrogen (white region) while the fields diminish accordingly.

Rol Johnson 6/28/2005MICE/MANX20 G4BL Precooler Simulation Equal decrement case. ~x1.7 in each direction. Total 6D emittance reduction ~factor of 5.5 Note this requires serious magnets: ~10 T at conductor for 300 to 100 MeV/c deceleration

Rol Johnson 6/28/2005MICE/MANX21 Idea #5: MANX 6-d demonstration experiment Muon Collider And Neutrino Factory eXperiment To Demonstrate –Longitudinal cooling –6D cooling in cont. absorber –Prototype precooler –Helical Cooling Channel –Alternate to pressurized RF –New technology Thomas J. Roberts et al., A Muon Cooling Demonstration Experiment, PAC05 A phase II grant proposal for $750,000 to develop this idea is pending.

Rol Johnson 6/28/2005MICE/MANX22 G4BL MANX with MICE spectrometers

Rol Johnson 6/28/2005MICE/MANX23 Muon Trajectories in 3-m MANX

Rol Johnson 6/28/2005MICE/MANX24 Phase I Fermilab TD Measurements Fig. 9. Comparison of the engineering critical current density, J E, at 14 K as a function of magnetic field between BSCCO-2223 tape and RRP Nb 3 Sn round wire. Licia Del Frate et al., Novel Muon Cooling Channels Using Hydrogen Refrigeration and HT Superconductor, PAC05

Rol Johnson 6/28/2005MICE/MANX25 MANX/Precooler H2 or He Cryostat Five meter long MANX cryostat schematic. For RAL, the length becomes 3 m. The use of Liquid He at 4 K is possible, with Nb3Sn magnets. Thin Al windows designed for MICE will be used.

Rol Johnson 6/28/2005MICE/MANX26 Proposal: Phase I MICE becomes a facility Ideas to be tested by a MICE Facility Transverse Ionization Cooling (original MICE) Helical Cooling Channel Longitudinal cooling 6D cooling in continuous absorber Prototype precooler Alternate to pressurized RF in HCC (add MICE RF?) New technology (HTS, Pressurized RF)

Rol Johnson 6/28/2005MICE/MANX27 Funding for muon cooling R&D is uncertain; additional enthusiastic supporters are needed! Extreme cooling for an energy frontier muon collider or Higgs factory is essential –Could be a large community (FNAL, ILC) Extreme cooling can be used in a SC Linac for a neutrino factory –FNAL SC Linac proponents –Could attract super beam and beta beam enthusiasts Cooling may help stopping or intense muon beams –Some creativity may be needed