HIS Team and Collaborators University of Texas at Austin – David Maidment, Tim Whiteaker, Ernest To, Bryan Enslein, Kate Marney San Diego Supercomputer.

Slides:



Advertisements
Similar presentations
The CUAHSI Community Hydrologic Information System David Tarboton, David Maidment, Ilya Zaslavsky, Dan Ames, Jon Goodall, Richard Hooper, Jeffrey Horsburgh.
Advertisements

CUAHSI – Unidata Collaboration Opportunities Support EAR CUAHSI HIS Sharing hydrologic data David Tarboton.
Some notes on CyberGIS in hydrology Ilya Zaslavsky Spatial Information Systems Lab San Diego Supercomputer Center UCSD TeraGrid CyberGIS Workshop, February.
HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
How to share and publish your data using HIS David G Tarboton Jeff Horsburgh Ilya Zaslavsky Tom Whitenack David Valentine Support EAR
The CUAHSI Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data
Sharing Hydrologic Data with the CUAHSI Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data David.
This work is funded by the Inland Northwest Research Alliance INRA Constellation of Experimental Watersheds: Cyberinfrastructure to Support Publication.
ICEWATER: INRA Constellation of Experimental Watersheds Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S. Horsburgh, Utah State.
A Community Data Model for Hydrologic Observations Observations Data Model Schema ODM Data Source and Network SitesVariables ValuesMetadata Depth of snow.
Hydrologic Data and Modeling: Towards Hydrologic Information Science David R. Maidment Center for Research in Water Resources University of Texas at Austin.
Development of a Community Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data David Maidment (PI),
Development of a Community Hydrologic Information System David G Tarboton Jeffery S Horsburgh, David R. Maidment (PI), Tim Whiteaker, Ilya Zaslavsky, Michael.
Hydrologic Information Systems David Maidment, Tim Whiteaker, Dean Djokic, Norman Jones ESRI, Redlands CA Sept 4, 2007.
Linking HIS and GIS How to support the objective, transparent and robust calculation and publication of SWSI? Jeffery S. Horsburgh CUAHSI HIS Sharing hydrologic.
This work is funded by National Science Foundation Grant EAR Accessing and Sharing Data Using the CUAHSI Hydrologic Information System CUAHSI HIS.
CUAHSI HIS Data Services Project David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin (HIS Project Leader)
Components of an Integrated Environmental Observatory Information System Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S.
This work was funded by the U.S. National Science Foundation under grant EAR Any opinions, findings and conclusions or recommendations expressed.
The HydroServer Platform for Sharing Hydrologic Data Support EAR CUAHSI HIS Sharing hydrologic data David G Tarboton, Jeffery.
Introduction to CUAHSI Water Web Services and Texas HIS David R. Maidment The University of Texas at Austin.
HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
Sharing and publishing data using CUAHSI HIS Outline HIS data publication system WaterML and WaterOneFlow web services Observations data model (ODM) Data.
Development of a Community Hydrologic Information System Jeffery S. Horsburgh Utah State University David G. Tarboton Utah State University.
Two NSF Data Services Projects Rick Hooper, President Consortium of Universities for the Advancement of Hydrologic Science, Inc.
Using GIS in Creating an End-to- End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
Deployment and Evaluation of an Observations Data Model Jeffery S Horsburgh David G Tarboton Ilya Zaslavsky David R. Maidment David Valentine
SAN DIEGO SUPERCOMPUTER CENTER Developing a CUAHSI HIS Data Node, as part of Cyberinfrastructure for the Hydrologic Sciences David Valentine Ilya Zaslavsky.
An End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David K. Stevens, David G. Tarboton, Nancy O. Mesner, Amber Spackman.
A Services Oriented Architecture for Water Resources Data David R. Maidment Center for Research in Water Resources University of Texas at Austin EPA Storet.
Tools for Publishing Environmental Observations on the Internet Justin Berger, Undergraduate Researcher Jeff Horsburgh, Faculty Mentor David Tarboton,
Using HydroServer Organize, Manage, and Publish Your Data Support EAR CUAHSI HIS Sharing hydrologic data Jeffery S. Horsburgh.
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
Ocean Sciences What is CUAHSI? CUAHSI – Consortium of Universities for the Advancement of Hydrologic Science, Inc Formed in 2001 as a legal entity Program.
Hydrologic Information System for the Nation Ilya Zaslavsky Spatial Information Systems Lab San Diego Supercomputer Center UCSD UCSD Seminar, February.
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
Water Web Services David R. Maidment Center for Research in Water Resources University of Texas at Austin Open Waters Symposium Delft, the Netherlands.
Data Interoperability in the Hydrologic Sciences The CUAHSI Hydrologic Information System David Tarboton, David Maidment, Ilya Zaslavsky, Dan Ames, Jon.
CUAHSI Hydrologic Information System an introduction Ilya Zaslavsky Director, Spatial Information Systems Lab San Diego Supercomputer Center University.
Advancing an Information Model for Environmental Observations Jeffery S. Horsburgh Anthony Aufdenkampe, Richard P. Hooper, Kerstin Lehnert, Kim Schreuders,
Publishing Observations Data: from ODM to HIS Central.
Sharing Data Using the CUAHSI Hydrologic Information System David Tarboton Utah State University Support EAR CUAHSI HIS Sharing hydrologic data.
Hydrologic Information System for the Nation I. Zaslavsky (SDSC) & The CUAHSI HIS Project his.cuahsi.org, hiscentral.cuahsi.org.
CUAHSI, WATERS and HIS by Richard P. Hooper, David G. Tarboton and David R. Maidment.
Overview of CUAHSI HIS Version 1.1 David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin CUAHSI Biennial Science.
Hydrologic Information System for the Nation I. Zaslavsky (SDSC) & The CUAHSI HIS Project his.cuahsi.org, hiscentral.cuahsi.org.
CBEO:N Chesapeake Bay Environmental Observatory as a Network Node About CBEO The mission of the CBEO project is development of a Chesapeake Bay Environmental.
CUAHSI Hydrologic Information Systems David R. Maidment Center for Research in Water Resources University of Texas at Austin and Ilya Zaslavsky, David.
The CUAHSI Hydrologic Information System Presented by Dr. Tim Whiteaker The University of Texas at Austin 22 February, 2011.
The CUAHSI Community Hydrologic Information System Jeffery S. Horsburgh Utah Water Research Laboratory Utah State University CUAHSI HIS Sharing hydrologic.
Bringing Water Data Together David R. Maidment Center for Research in Water Resources University of Texas at Austin Texas Water Summit San Antonio Tx,
Hydrologic Information System GIS – the water environment Water Resources – the water itself CUAHSI HIS: NSF-supported collaborative project: UT Austin.
CUAHSI HIS Features of Observations Data Model. NWIS ArcGIS Excel NCAR Trends NAWQA Storet NCDC Ameriflux Matlab AccessSAS Fortran Visual Basic C/C++
Critical Zone Observatory Data Discovery Each CZO maintains its own data management system(s) using the data formats it prefers The three CZO’s have a.
CUAHSI Hydrologic Information Systems David R. Maidment and Ernest To Center for Research in Water Resources, University of Texas at Austin Hydrosystems.
The CUAHSI Observations Data Model Jeff Horsburgh David Maidment, David Tarboton, Ilya Zaslavsky, Michael Piasecki, Jon Goodall, David Valentine,
CUAHSI HIS: Science Challenges Linking small integrated research sites (
Services-Oriented Architecture for Water Data David R. Maidment Fall 2009.
1 CUAHSI Web Services and Hydrologic Information Systems By David R. Maidment, University of Texas at Austin Collaborators: Ilya Zaslavsky and Reza Wahadj,
Developing a community hydrologic information system David G Tarboton David R. Maidment (PI) Ilya Zaslavsky Michael Piasecki Jon Goodall
The CUAHSI Hydrologic Information System Spatial Data Publication Platform David Tarboton, Jeff Horsburgh, David Maidment, Dan Ames, Jon Goodall, Richard.
Using GIS in Creating an End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
The CUAHSI Community Hydrologic Information System
Developing a Community Hydrologic Information System
Sharing Hydrologic Data with the CUAHSI* Hydrologic Information System
The CUAHSI Hydrologic Information System and NHD Plus A Services Oriented Architecture for Water Resources Data David G Tarboton David R. Maidment (PI)
The CUAHSI Hydrologic Information System Service Oriented Architecture for Water Resources CUAHSI HIS Sharing hydrologic data Support.
Hydroinformatics Lecture 15: HydroServer (and HydroServer Lite)
HydroDesktop: A Key Component of the CUAHSI/CZO HIS for Hydrologic Data Discovery, Visualization, and Analysis Daniel P. Ames, Ph.D. P.E. Idaho State University.
David Tarboton, Dan Ames, Jeffery S. Horsburgh, Jon Goodall
Presentation transcript:

HIS Team and Collaborators University of Texas at Austin – David Maidment, Tim Whiteaker, Ernest To, Bryan Enslein, Kate Marney San Diego Supercomputer Center – Ilya Zaslavsky, David Valentine, Tom Whitenack Utah State University – David Tarboton, Jeff Horsburgh, Kim Schreuders, Justin Berger Drexel University – Michael Piasecki, Yoori Choi University of South Carolina – Jon Goodall, Tony Castronova CUAHSI Program Office – Rick Hooper, David Kirschtel, Conrad Matiuk WATERS Network – Testbed Data Managers HIS Standing Committee USGS – Bob Hirsch, David Briar, Scott McFarlane NCDC – Rich Baldwin

The Need: Hydrologic Information Science Hydrologic conditions (Fluxes, flows, concentrations) Hydrologic Process Science (Equations, simulation models, prediction) Hydrologic Information Science (Observations, data models, visualization Hydrologic environment (Dynamic earth) Physical laws and principles (Mass, momentum, energy, chemistry) It is as important to represent hydrologic environments precisely with data as it is to represent hydrologic processes with equations

Databases: Structured data sets to facilitate data integrity and effective sharing and analysis. - Standards - Metadata - Unambiguous interpretation Analysis: Tools to provide windows into the database to support visualization, queries, analysis, and data driven discovery. Models: Numerical implementations of hydrologic theory to integrate process understanding, test hypotheses and provide hydrologic forecasts. Advancement of water science is critically dependent on integration of water information Databases Analysis Models ODM Web Services

What is the CUAHSI HIS? An internet based system to support the sharing of hydrologic data comprising databases connected using the internet through web services as well as software for data discovery, access and publication. CUAHSI-HIS Central Servers ODM Database WaterOneFlow Web Services Network/WSDL Registry HydroSeek HydroTagger 3 rd -Party Metadata Repositry etc. CUAHSI-HIS Servers ODM Database WaterOneFlow Web Services DASH ODM Data Loader ODM SDL ODM Tools 3 rd -Party Data Servers USGS NWIS NCDC ASOS NCEP NAM 12K NASA MODIS etc. (with web service capability) 3 rd -Party Analysis Software GIS Matlab Splus R IDL Java C++ VB Browser-based Data Discovery Tools DASH Hydroseek Data Transmission Formats WaterML Other Data Access Toolbox HydroExcel HydroGet OpemMI Interface HydroObjects

Key HIS components WSDL Registry ODM Clients HydroSeek Ontology Matlab CV Services ODM Tools HydroGet HydroExcel

Base Station Computer(s) Telemetry Network Sensors Query, Visualize, and Edit data using ODM Tools Excel Text ODM Database ODM Data Loader Streaming Data Loader GetSites GetSiteInfo GetVariableInfo GetValues WaterOneFlow Web Service WaterML Discovery Hydroseek Access Analysis GIS Matlab Splus R IDL Java C++ VB Water Metadata Catalog Harvester Service RegistryHydrotagger HIS Central HydroExcel HydroGet HydroLink HydroObjects ODM Contribute your ODM CUAHSI HIS Data Publication System 6

Direct analysis from your favorite analysis environment. e.g. Matlab % create NWIS Class and an instance of the class createClassFromWsdl(' /NWIS/DailyValues.asmx?WSDL'); WS = WaterOneFlow; % GetValues to get the data siteid='NWIS: '; bdate=' T00:00:00'; edate=' T00:00:00'; variable='NWIS:00060'; valuesxml=GetValues(WS,siteid,variable,bdate,edate,'');

CUAHSI Observations Data Model Streamflow Flux tower data Precipitation & Climate Groundwater levels Water Quality Soil moisture data A relational database at the single observation level (atomic model) Stores observation data made at points Metadata for unambiguous interpretation Traceable heritage from raw measurements to usable information Standard format for data sharing Cross dimension retrieval and analysis Space, S Time, T Variables, V s t ViVi v i (s,t) “Where” “What” “When” A data value 8

Horsburgh, J. S., D. G. Tarboton, D. R. Maidment and I. Zaslavsky, (2008), A Relational Model for Environmental and Water Resources Data, Water Resour. Res., 44: W05406, doi: /2007WR CUAHSI Observations Data Model 9

Discharge, Stage, Concentration and Daily Average Example 10

Stage and Streamflow Example 11

Daily Average Discharge Example Daily Average Discharge Derived from 15 Minute Discharge Data 12

11 WATERS Network test bed projects 16 ODM instances (some test beds have more than one ODM instance) Data from 1246 sites, of these, 167 sites are operated by WATERS investigators National Hydrologic Information Server San Diego Supercomputer Center HIS Implementation in WATERS Network Information System

HIS Desktop (to be developed in 2009) Harvesting data from web services Observations Models Climate GIS Remote Sensing HIS Desktop can be rebranded to become CZO Desktop if necessary

Critical Zone Observatory Data Discovery Each CZO maintains its own data management system(s) using the data formats it prefers The three CZO’s have a common metadata management system, expressed in tables, where each table record describes a particular data series or dataset, including its URL address CZO Metadata tables are published and accessed through the internet using Web Feature Services (WFS) defined by the Open Geospatial Consortium Metadata table records are linked to geographic features, also published as Web Feature Services to show data location on a base map

CZO Data Types 1.Regular Time Series – data measured with automated sensors at a fixed location at regular intervals 2.Irregular Time Series – manually collected field samples from a fixed location at irregular intervals 3.GIS coverages and photos 4.One-Time Collections – rock and soil samples collected once at known position and depth 5.Other Data – LIDAR, land surveys, channel cross- sections, tree surveys, geophysics, snow surveys Point Observations Time Series

Metadata for selected data series at observation point H1 Observations Catalog for Waters Network Testbed Project in Corpus Christi Bay displayed over the US Hydrology Base Map from WSDL address and parameters to obtain observations data using GetValues 17 The same metadata structure supports data access through WaterML

Summary Generic method for publishing observational data –Supports many types of point observational data –ODM and WaterML Overcome syntactic and semantic heterogeneity using a standard data model and controlled vocabularies –Supports a national network of observatory test beds but can grow! Web services provide programmatic machine access to data –Work with the data in your data analysis software of choice Internet-based applications provide user interfaces for the data and geographic context for monitoring sites