1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.

Slides:



Advertisements
Similar presentations
IEEE Device Research Conference, June , Notre Dame
Advertisements

Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
Ultra High Speed InP Heterojunction Bipolar Transistors Mattias Dahlström Trouble is my business, (Raymond Chandler)
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
High speed InP-based heterojunction bipolar transistors Mark Rodwell University of California, Santa Barbara ,
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
1 Bipolar Junction Transistor Models Professor K.N.Bhat Center for Excellence in Nanoelectronics ECE Department Indian Institute of Science Bangalore-560.
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Introduction to GaAs HBT and current technologies
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
Device Research Conference, June 19, 2012
High Transconductance Surface Channel In0. 53Ga0
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Presentation transcript:

1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California, Santa Barbara, CA D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu IQE Inc., 119 Technology Drive, Bethlehem, PA International Symposium on Compound Semiconductors 2011

2 Outline HBT Scaling Laws Refractory base ohmics Fabrication DHBT – Epitaxial Design and Results Summary

3 Ohmic contacts Lateral scaling Epitaxial scaling Bipolar transistor scaling laws To double cutoff frequencies of a mesa HBT, must: (emitter length L e ) WeWe TbTb TcTc W bc Keep constant all resistances and currents Reduce all capacitances and transit delays by 2

4 InP bipolar transistor scaling roadmap Emitter Width (nm) 8421 Access ρ (Ω·µm 2 ) Base Contact width (nm) Contact ρ (Ω·µm 2 ) Collector Thickness (nm) Current density mA/µm 2 Breakdown voltage V fτfτ GHz f max GHz Performance Design Rodwell, Le, Brar, Proceedings of IEEE, 2008

5 Pd contacts diffuse in base (p-InGaAs) Contact resistance ↑ for thin base Limits base thickness  Scaling Limitation 100 nm InGaAs grown in MBE 15 nm Pd diffusion Need for non-diffusive, refractory base metal Contact diffusion TEM by E Lobisser Ashish Baraskar

6 Refractory base ohmics DopingMetalType  c (  -  m 2 ) 1.5E20MoAs deposited E20Ru/MoAs deposited E20W/MoAs deposited E20Ir/MoAs deposited E20Ir/MoAs deposited E20Ir/MoAnnealed0.8 Ashish Baraskar et al., EMC 2010 Refractory metal base contacts Require a blanket deposition and etch-back process Ashish Baraskar et al., Int. MBE 2010

7 Emitter process flow Mo contact to n- InGaAs for emitter W/TiW/SiO 2 /Cr dep SF 6 /Ar etch SiN x Sidewall SiO 2 /Cr removal InGaAs Wet Etch Second SiN x Sidewall InP Wet Etch W/TiW interface acts as shadow mask for base lift off Collector formed via lift off and wet etch BCB used to passivate and planarize devices

8 W Mo InGaAs p+ InGaAs Base Ti 0.1 W 0.9 InP W Mo InGaAs p+ InGaAs Base Ti 0.1 W 0.9 InP Base process flow – I PR Blanket refractory metal PR Planarization Isotropic Dry etch of metal Removes any Emitter-Base short

9 W Mo InGaAs p+ InGaAs Base Ti 0.1 W 0.9 InP W Mo InGaAs p+ InGaAs Base Ti 0.1 W 0.9 InP SiN x Base process flow – II Lift-off Ti/Au Low base metal resistance Blanket SiN x mask Etch base contact metal in the field

10 Base Planarization Planarization: Emitter projecting from PR for W dry etch Etch Back Planarization Boundary

11 Epitaxial Design T(nm)MaterialDoping (cm -3 )Description 10In 0.53 Ga 0.47 As 8  : Si Emitter Cap 15InP 5  : Si Emitter 15InP 2  : Si Emitter 30InGaAs 9-5  : C Base 4.5In 0.53 Ga 0.47 As 9  : Si Setback 10.8InGaAs / InAlAs 9  : Si B-C Grade 3InP 6  : Si Pulse doping 81.7InP 9  : Si Collector 7.5InP 1  : Si Sub Collector 7.5In 0.53 Ga 0.47 As 2  : Si Sub Collector 300InP 2  : Si Sub Collector SubstrateSI : InP V be = 1 V, V cb = 0.7 V, J e = 25 mA/  m 2 Low Base doping  Good refractory ohmics not possible  Pd/W contacts used

12 Results - DC Measurements BV ceo = 2.4 J e = 1 kA/cm 2 β = 26 J KIRK = 21 mA/  m f ,f max J e = 17.9 mA/  m 2 P = 30 mW/  m 2 Gummel plot Common emitter I-V

GHz RF Data I c = 22.4 mA V ce = 1.67 V J e = 17.9 mA/  m 2 V cb = 0.7 V Single-pole fit to obtain cut-off frequencies

14 Equivalent Circuit Hybrid-  equivalent circuit from measured RF data R ex = 6  m 2

15 TEM Large undercut in base mesa Pd/W adhesion issue  High R bb  Low f max 0.1  m Pd/W adhesion issue Large mesa undercut

16 Summary Demonstrated a planarized, etch back process for refractory base contacts Demonstrated DHBTs with peak f  / f max = 410/690 GHz Higher base doping, thinner base and refractory base ohmics needed to enable higher bandwidth devices

17 Questions? Thank You This work was supported by the DARPA THETA program under HR C-006. A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR