SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 E-158 : A precise measurement of at low Antonin VACHERET CEA SACLAY PAVI 2004, June 10 The.

Slides:



Advertisements
Similar presentations
Fast and Precise Beam Energy Measurement at the International Linear Collider Michele Viti.
Advertisements

Lecture 2.
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
1/22 MOLLER Juliette M. Mammei. 2/22 Working Groups Polarized Source Hydrogen Target Spectrometer Integrating Detectors Tracking Detectors Polarized Beam.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
1 May The E158 Experiment A Precision Measurement of the Weak Mixing Angle in Fixed Target electron-electron (Møller) Scattering Krishna Kumar University.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
The Strange Form Factors of the Proton and the G 0 Experiment Jeff Martin University of Winnipeg Collaborating Institutions Caltech, Carnegie-Mellon, William&Mary,
1 SLUO 2004SLAC E-158 A Study of Parity Violation in Møller Scattering Mike Woods, SLAC SLUO Meeting, July 2004 E158 Goal:  sin 2  W = +/ Best.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
SLAC E158: Measuring Parity Violation in Fixed-Target Møller Scattering David Relyea SLAC/Princeton University CIPANP May, 2003 QC1B Main acceptance.
M. Woods (SLAC) BI Tests for the Linear Collider Turning the LOI into a Proposal SLAC ALCPG Meeting Jan. 9, 2004 M. Woods, SLAC LC-LEP Beam Tests at SLAC.
Parity-Violating Electron Scattering Jeff Martin University of Winnipeg.
Cultural Interlude Emlyn Hughes Caltech DOE HEP Review July 21, 2004 Final Results from SLAC Experiment E158 “Measurement of the Electroweak Mixing Angle”
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
Bogdan Wojtsekhowski, Jefferson Lab Experimental search for A’ for APEX collaboration 1.
PN12 Workshop JLab, Nov 2004 R. Michaels Jefferson Lab Parity Violating Neutron Densities Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
Searches for Physics Beyond the Standard Model The MOLLER Experiment at Jefferson Laboratory Willem T.H. van Oers CSSM – February 15-19, 2010 Information.
Abstract A time resolved radial profile neutron diagnostic is being designed for the National Spherical Torus Experiment (NSTX). The design goal is to.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Collimator June 1-19, 2015HUGS The collimator is placed about 85 cm from the target and intercepts scattered electrons from 0.78° to 3.8° Water cooled.
From Z 0 to Zero: A Precise Measurement of the Running of the Weak Mixing Angle SLAC E158 Steve Rock University of Massachusetts Zeuthen For SLAC E158.
Opportunities for Precision Measurements, New Physics Searches & Low Energy Fixed Target Expts at a Modified “FEL” Accelerator Complex R. D. Carlini 12/7/2011.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
A study of systematic uncertainties of Compton e-detector at JLab, Hall C and its cross calibration against Moller polarimeter APS April Meeting 2014 Amrendra.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Low Energy Tests of the Standard Model Emlyn Hughes Spin 2004 Trieste October 14, 2004 *PAST *PRESENT *FUTURE.
Nuruzzaman ( Hampton University Group Meeting 1 st November 2011 Beamline Optics Using Beam Modulation for the Q-weak Experiment.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
Energy calibration at LHC J. Wenninger. Motivation In general there is not much interest for accurate knowledge of the momentum in hadron machines. 
The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton’s Weak Charge Measure: Parity-violating asymmetry in e + p.
PVDIS at JLab 6 GeV Robert Michaels Jefferson Lab On Behalf of the HAPPEX Collaboration Acknowledgement: Talk prepared by Kai Pan (MIT graduate student)
Pb Electroweak Asymmetry in Elastic Electron-Nucleus Scattering : A measure of the neutron distribution PREX and CREX 48 Ca Neutron Skin Horowitz.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
SLAC, September 25, 2009 Searching for a U -boson with a positron beam Bogdan Wojtsekhowski Thomas Jefferson National Accelerator Facility  The light.
Fast or slow positron spin flipping Sabine Riemann (DESY) November 17, 2008 ILC08, University of Illinois - Chicago.
April 23, 2006PV in Electron Scattering on H and He P. A. Souder Parity-Violating Electron Scattering on Hydrogen and Helium … and Strangeness in the Nucleon.
Compton polarimetry for EIC. Outline Polarized electron beam Compton process Compton polarimeters at Jefferson Laboratory – Parity experiments at Jlab.
Photon Source and Tagger Richard Jones, University of Connecticut GlueX Detector ReviewOctober 20-22, 2004, Newport News presented by GlueX Tagged Beam.
The Q Weak Experiment Event tracking, luminosity monitors, and backgrounds John Leacock Virginia Tech on behalf of the Q Weak collaboration Hall C Users.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
PREX Issues. Outline New issue: souce systematics and Aug. 07 run. Update on old issues. Progress at SU.
Moller Polarimeter Q-weak: First direct measurement of the weak charge of the proton Nuruzzaman (
Run Time, Mott-Schwinger, Systematics, Run plan David Bowman NPDGamma Collaboration Meeting 10/15/2010.
Source Systematics PITA - type effects The importance of controlling the analyzer-axis –Two Pockels cells –Half-wave plate Position asymmetries –Lensing.
12 GeV MOLLER U PDATE TO THE H ALL A C OLLABORATION Juliette M. Mammei.
DIS-Parity: Measuring sin 2 θ W with Parity Violation in Deep Inelastic Scattering using Baseline Spectrometers at JLab 12 GeV Paul E. Reimer.
Hall C Summer Workshop August 6, 2009 W. Luo Lanzhou University, China Analysis of GEp-III&2γ Inelastic Data --on behalf of the Jefferson Lab Hall C GEp-III.
Parity Experiments and JLab Injector Riad Suleiman February 5, 2016.
G0 Backward Angle Request: Q 2 = 0.23, 0.48 GeV 2 Main points G0 goal is to measure G E s, G M s and G A e over range of momentum transfers with best possible.
G 0 Project Coordinator Report Joe Grames “Big Picture” Schedule Preparations Polarized Source Injector Accelerator Hall C Accelerator Plans for 687 MeV.
Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Polarized Electron Beams.
John Leacock April 20, 2009 Qweak: A Precision Test of Standard Model and Determination of Weak Charge of the Proton Four fundamental interactions of the.
Summary of Analysis for the Transverse Asymmetry Measurement in Δ Resonance March 13, 2015 Nuruzzaman Endorsement Talk at the Q-weak Collaboration Meeting.
Pb-Parity and Septum Update Presented by: Luis Mercado UMass - Amherst 12/05/2008 Thanks to Robert Michaels, Kent Pachke, Krishna Kumar, Dustin McNulty.
Parity Quality Beam (PQB) B-Team Meeting September 10, 2008.
In the SM to the first order x: variable relevant to the nucleon internal structure Q 2 : Four-momentum transfer squared between the electron and the target.
Polarized Injector Update
Sanghwa Park (Stony Brook) for the PREX/CREX Collaboration
Parity Violation in eP Scattering at JLab
Weak probe of the nucleon in electron scattering
The G0 experiment at JLAB
G0 Backward Angle Accelerator Preparations
At a Future Linear Collider
Deep Inelastic Parity Robert Michaels, JLab Electroweak Physics
HALLA APEL REPORT Yves Roblin Hall A colllaboration Meeting
Measurement of Parity-Violation in the N→△ Transition During Qweak
Presentation transcript:

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 E-158 : A precise measurement of at low Antonin VACHERET CEA SACLAY PAVI 2004, June 10 The 2 miles long LINAC at SLAC

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Physics Motivation Apparatus Control of systematics Analysis Run I+II preliminary results Conclusion

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Extracting the weak charge at low M ø ller scattering : - Sensitive to: e, Q w Parity violation asymmetry : Tree level Moller asymmetry : QwQw

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Radiative corrections 1 loop corrections change the relation between A ee and : 3% corrections to

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Sensitivity Electron compositness  ~ 10 TeV Z’ (GUT) boson M Z’ ~ 0.8 TeV Projection Aim to measure to level 6.5  significance level to radiative corrections effect. 1. Precise measurement away from Z pole complementary to e-e+ colliders 2. Sensitive to new physics scenarii :

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 SLAC E158 ESA A-line UC Berkeley Caltech Jefferson Lab Princeton Saclay SLAC Smith College Syracuse UMass Virginia Sep 97: EPAC approval : Design and Beam Tests 2000: Funding and construction 2001: Engineering run 2002: Physics Runs I, II 2003: Physics Run III SLAC

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Experiment principle LH2 4-7 mrad N+,N- E e = 45 GeV Fast polarization reversal 120 Hz High Polarization Pe=85% A ee =P e A exp High intensity 5x10 11 e - /pulse BEAM TARGET DETECTOR 2,7 GHz scattered M ø ller High density target,  ee =12  b L ~ cm -2 s -1 Raw Asymmetry =1.3x10 -7 (130 ppb)  (Apv) = (10 ppb) Need electrons Flux integration 4 Months to achieve 10% statistical precision

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Polarized beam Optical pumping : Helicity sequence : Quadruplet RLLR,LLRR,… Wavelength (nm) Polarization (%) QE (%) Very high-charge polarized electron beams are possible (Pe~85%)  Beam helicity is chosen pseudo-randomly at 120 Hz Data analyzed as “pulse-pairs”

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Liquid Hydrogen target Length 1.54 m Refrigeration capacity 1 kW Beam heat deposit 800W Operating temperature 20K Flow rate 5 m/s

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Spectrometer Dipole Magnetic chicane cut particles < 10 GeV Quadrupoles focus Møller electrons Synchrotron light blocked with Collimators. 60 m e-e

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Electron Detector Full Azimuthal acceptance Radiation hard Fast pure Cerenkov signal Insensitive to low energy backgrounds Basic Idea: : quartz : copper light guide PMT shielding air

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Statistics and systematics Integrating counting rate : 1. Additional random fluctuations : affect statistical precison 2. Constant shift : false asymmetry Origin : beam parameters variations (E,X,Y,  x,  y) Physics backgrounds Electronic crosstalk Pulse pair width ~ 200 ppm Raw asymmetry ~ 150 ppb

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Energy dithering region Precise beam diagnostics High resolution BPM cavity monitors (energy position, angle) Toroids (beam current)  BPM ~2 microns  energy ~1 MeV Agreement (MeV) BPM24 X (MeV) BPM12 X (MeV)  toroid ~30 ppm

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Luminosity Monitor Parallel plates more than 10 8 scattered electrons per spill at  lab ~ 1 mrad Null asymmetry test Enhanced sensitivity to beam fluctuations Density fluctuations monitor

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Minimizing beam asymmetries A I ~0.5% A E ~0.1% Feedback loop (Cumulative) : A I < 200 ppb +/- 5 ppb A E < 20 ppb +/- 3 ppb Cumulative asymmetries with feedback on : Natural pulse to pulse jitter : (run I data)

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Backgrounds controls Flux integration includes various residual backgrounds : eP ring Dilution effect False asymmetry Flux Radial and azimuthal scans Pion flux and asymmetry eP asymmetry

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Scattered flux profile Very good agreement between Flux scans and MC (run I) Q 2 determination : = GeV-2 Radial and azimuth agreementFlux vs radial distance agreement e-e e-p

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Correcting beam fluctuations Beam jitter enlarge distribution of asymmetry pairs. Two complementary method to correct for the beam noise : –DITHERING –REGRESSION Two main steps : 1.determine the dependance a of the detector integrated flux to beam parameters variations 2.Correct the detector asymmetry : Klystron EX dXYdY An Ax  Areg

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Corrections method Run I:  A PV (regression-dithering) = ( 3.1 ± 11.8 ) ppb Run II:  A PV (regression-dithering) = ( 4.8 ± 4.2 ) ppb Very good agreement !

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Analysis Blinded asymmetry Raw asymmetry distribution by pairs Gaussian over 5 orders of magnitude Raw asymmetry distribution by runs

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Slow reversal 1. Insertable Half Wave Plate 2. Energy change 45 -> 48 GeV g-2 precession in A-Line Split data in four exclusive states :

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Systematics summary Source Run I + II DA (ppb)Dilution Beam 1 st order 0 +/- 2- Beam 2 nd order 0 +/- 9- Transverse polarization -12 +/- 2- eP Background -30 +/ / High energy  3 +/ / Synchrotron  0 +/ / Neutrons / / Pions 0.5 +/ / Normalization factors Polarimetry / Geometry /

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Run I+II Preliminary A PV = -161  21 (stat)  17 (syst) ppb Run I + II (preliminary) Run I A PV = -175  30 (stat)  20 (syst) ppb Run II A PV = -144  28 (stat)  23 (syst) ppb Official Run I result : PRL : hep/ex: First observation of parity violation in Møller scattering ~ 5  Q 2 = GeV2):

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 E158 projected The Weak Mixing Angle sin 2  eff (Q 2 =0.026 GeV 2 ) = ± ± (Run I + II, preliminary) Agreement with theory at the level of uncertainty prediction: ± (stat)(syst) sin 2  (M Z 2 )

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Physics implication Parity is violated in Møller scattering Limit on  LL :  + LL >= 7,4 TeV  - LL >= 6,4 TeV Limits on extra Zs at the level of 700 GeV

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Toward the final result Run III data analysis is being finalized Preliminary result on full data set very soon Systematics will improve Significant complementary constraint on new physics

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Conclusion –Preliminary result on APV: -161 ± 21 ± 17 ppb –sin 2  W eff = ± ± (preliminary) –Inelastic e-p asymmetry at low Q 2 consistent with quark picture –First measurement of e-e transverse asymmetry –Preliminary result for all three runs soon ! - 10 ppb statistical error - Systematic error will be less than statistical error

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Run 1: Spring 2002 Run 2: Fall 2002 Run 3: Summer 2003 Physics Runs Electrons on Target Run 1: Apr 23 12:00 – May 28 00:00, 2002 Run 2: Oct 10 08:00 – Nov 13 16:00, 2002 Run 3: July 10 08:00 - Sep 10 08:00, 2003 One g-2 flip in each run /2 flip roughly once in two days Run I data divided into 24 “slugs”

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Higher orders Beam spotsize : higher moment in residual polarisation effect at the photocathode. Beam sub pulse fluctuations - Evidences in Run II analysis - monitored during Run III in order to estimate the systematics. - affect the OUT only

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Wavelength (nm) Polarization (%) QE (%) Laser Power (µJ) Electrons per pulse New cathode Old cathode Very high-charge polarized electron beams are possible. No sign of charge limit! Small anisotropy in strain results in ~3% analyzing power for residual linear polarization. Source Photocathode New photocathode from NLC R&D effort. (T. Maruyama et al., Nucl.Instrum.Meth.A492: ,2002 ) Gradient-doped cathode structure. Low doping for most of active layer yields high polarization. High doping for 10-nm GaAs surface overcomes charge limit.

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Acceptance segmentation Dividing the acceptance : 1. Monitoring the counting statistics versus  and  2. Checking systematics : building monopoles,dipoles amplify false asymmetries. X DIPOLE Y DIPOLE

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 End Station A setup Target chamber Dipoles Detector Cart Drift pipe Quadrupoles Concrete Shielding 60 m

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Results of corrections Regression Dithering cxccxc pxcpxc pxppxp cxpcxp Run I:  A PV (regression-dithering) = (3.1 ± 11.8) ppb Run II:  A PV (regression-dithering) = (4.8 ± 4.2) ppb Asym width goes form ~500 ppm to 200 ppm

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 from A PV to sin 2  W eff where: is an analyzing power factor; depends on kinematics and experimental geometry. Uncertainty is 1.7%. (y = Q 2 /s) F brem = (0.90 ± 0.01) is a correction for ISR and FSR; (but thick target ISR and FSR effects are included in the analyzing power calculation from a detailed MonteCarlo study)  W eff is derived from an effective coupling constant, g ee eff, for the Zee coupling, with loop and vertex electroweak corrections absorbed into g ee eff

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 “ep” Detector Data Radiative tail of elastic ep scattering is dominant background 8% under Moller peak Additional 1% from inelastic e-p scattering Coupling is large: similar to 3 incoherent quarks Reduced in Run II with additional collimation

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Backgrounds

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 CID Gun Vault IA Feedback Loop IA cell applies a helicity-correlated phase shift to the beam. The cleanup polarizer transforms this into intensity asymmetry. POS Feedback Loop Piezomirror can deflect laser beam on a pulse-to-pulse basis. Can induce helicity-correlated position differences. Polarized Source Laser System

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 “ANALYSIS OF AN ASYMMETRIC RESONANT CAVITY AS A BEAM MONITOR” (David H. Whittum (SLAC), Yury Kolomensky (Caltech). SLAC-PUB-7846; published in Rev.Sci.Instrum.70: ,1999.) RF Cavity BPM rf Cavity BPMs for E MHz Mixer Rf cavities resonate at 2856 MHz X cavity is TM 210 Y cavity is TM 120 Q cavity is TM 010

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Beam Performance Electrons / pulse 6 x GeV, 3.5 x GeV Rep. rate120 Hz Intensity jitter0.5% Position jitter50 µm Spot size jitter5% of spot size Energy jitter0.03% rms Energy spread0.1% rms Polarization(85 ± 5)% Efficiency~(65-70)% Quantity Delivered (May 2002) All proposal goals achieved or exceededQuantity Run 1 Achieved AQAQ Alcove: 219 ± 319 ppb (AQ)(AQ) -8.4 ± 7.8 ppb * AEAE -0.1 ± 1.4 keV -1.2 ± 14.8 ppb (AE)(AE) ± 0.24 keV 0.05 ± 2.6 ppb (  x,  y) target (-16.6 ± 5.6 nm, -3.1 ± 4.0 nm)  (  x,  y) target (1.0 ± 0.6 nm, ± 0.9 nm) (  x,  y) angle (15.9 ± 9.4 nm, 4.8 ± 2.7 nm)  (  x,  y) angle (-2.7 ± 2.0 nm, 0.9 ± 1.0 nm) (  x,  y) spotsize (0.7 ± 1.9 nm, -1.7 ± 1.9 nm)

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Luminosity Monitor Data Null test at level of 20 ppb Target density fluctuations small Limits on second order effects

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Collimators

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Pion Detector ~ 0.5 % pion flux ~ 1 ppm asymmetry < 5 ppb correction

SLAC E-158Antonin VACHERET, CEA-Saclay Dapnia/SPhNPAVI 2004 Qweak ~4 years Future Possibilities Part per billion measurements are now feasible: future measurements could improve sensitivity Challenging experiments Interest will depend on discoveries (or lack thereof) over the next few years, including LHC E158 (projected) DIS Jlab 12 GeV Møller Jlab 12 GeV