28 Oct 2003 particle stream timing X17 flare in 10 486 Solar Release Time (SRT) Arrival at 1AU First radio signature (corrected) 10:5011:01:20 (<800 MHz)

Slides:



Advertisements
Similar presentations
NBYM 2006 A major proton event of 2005 January 20: propagating supershock or superflare? V. Grechnev 1, V. Kurt 2, A. Uralov 1, H.Nakajima 3, A. Altyntsev.
Advertisements

Recent developments in our understanding of solar energetic particles Karl-Ludwig Klein SoHO/EIT.
Solar flares and accelerated particles
Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
SEP Acceleration Mechanisms Dennis K. Haggerty and Edmond C. Roelof Johns Hopkins U./Applied Physics Lab. ACE/SOHO/STEREO/Wind Workshop Kennebunkport,
Electron Acceleration at the Solar Flare Reconnection Outflow Shocks Gottfried Mann, Henry Aurass, and Alexander Warmuth Astrophysikalisches Institut Potsdam,
ISSI THz Overview Hugh Hudson, Säm Krucker, Gerard Trottet.
Working Group 2 - Ion acceleration and interactions.
Multiwavelength Study of Magnetic Reconnection Associated with Sigmoid Eruption Chang Liu BBSO/NJIT
3 November 2003 event HXR/Gamma-ray and radio observations Rhessi_workshop.
MRT workshop, August 10, 2004 Active-region magnetic structures and their perturbations by flares H.S. Hudson SSL/UCB.
NJIT-seminar Newark, NJITWiegelmann et al: Nonlinear force-free fields 1 Nonlinear force-free extrapolation of coronal magnetic.
SEPs and Solar Radio Bursts S. Krucker and H. Hudson Time-of-flight analysis of SEP propagation Connectivity of the SEP field lines SIRA relevance.
Radio bursts and CME’s Monique Pick RHESSI workshop 5-8 April 2006.
Stanford, January Solar flares, magnetars, and helioseismology H.S. Hudson SSL/UCB.
RHESSI 4-8 April 06 Origin of > 100 GHz radio emission Gérard Trottet Laboratoire d’Etudes Spatiale et d’Instrumentation en Astrophysique (LESIA) Observatoire.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
The nature of impulsive solar energetic particle events N. V. Nitta a, H. S. Hudson b, M. L. Derosa a a Lockheed Martin Solar and Astrophysics Laboratory.
Coronal hard X-rays prior to RHESSI H. S. Hudson Space Sciences Lab, UC Berkeley.
Sung-Hong Park Space Weather Research Laboratory New Jersey Institute of Technology Study of Magnetic Helicity and Its Relationship with Solar Activities:
Solar Origin of energetic particle events Near-relativistic impulsive electron events observed at 1 AU M. Pick, D. Maia, S.J. Wang, A. Lecacheux, D. Haggery,
Overview of White Light & Radio Signatures of CMEs Angelos Vourlidas Naval Research Laboratory.
Stuart D. BaleFIELDS iCDR – Science Requirements Solar Probe Plus FIELDS Instrument CDR Science and Instrument Overview Science Requirements Stuart D.
Long-Lasting 3 He-Rich Solar Energetic Particle Sources R. Bučík, D. E. Innes, U. Mall, A. Korth (MPS) G. M. Mason (JHU) R. Gómez-Herrero (UAH) STEREO.
Pietro Zucca, Eoin Carley, Shaun Bloomfield, Peter Gallagher
High-Cadence EUV Imaging, Radio, and In-Situ Observations of Coronal Shocks and Energetic Particles: Implications for Particle Acceleration K. A. Kozarev.
Shock wave formation heights using 2D density and Alfvén maps of the corona ABSTRACT Coronal shock waves can produce decametric radio emission known Type.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
IHY Workshop A PERSONAL VIEW OF SOLAR DRIVERS for Solar Wind Coronal Mass Ejections Solar Energetic Particles Solar Flares.
Relation between Type II Bursts and CMEs Inferred from STEREO Observations N. Gopalswamy, W. Thompson, J. Davila, M. Kaiser NASA Goddard Space Flight Center,
Ultimate Spectrum of Solar/Stellar Cosmic Rays Alexei Struminsky Space Research Institute, Moscow, Russia.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
National Aeronautics and Space Administration NASA Goddard Space Flight Center Software Engineering Division Overview of Significant SWx Events.
Time evolution of the chromospheric heating and evaporation process Case study of an M1.1 flare on 2014 September 6 Peter Young 1,2, Hui Tian 3, Katharine.
1 July 14, SHINE WorkshopKeauhou, Hawaii, USA Chanruangrith Channok, 1 David Ruffolo, 1 Mihir Desai, 2 and Glenn Mason 2 1 THAILAND 2 USA Finite-Time.
Yihua Zheng Solar Energetic Particles (SEPs) Goals: identify SEPs in data, connect to drivers, identify characteristics of SEPs June 2, 2015SW REDI Boot.
Radio diagnostics of electron acceleration in the corona and in the IP medium Radio observations of the late/gradual/second phase of flares: implications.
Electron Acceleration in the Solar Corona The Sun is an active star. Gottfried Mann Astrophysikalisches Institut Potsdam, D Potsdam
Why Solar Electron Beams Stop Producing Type III Radio Emission Hamish Reid, Eduard Kontar SUPA School of Physics and Astronomy University of Glasgow,
Type III radio bursts observed with LOFAR and Nançay radioheliograph Jasmina Magdalenić 1, C. Marqué 1, A. Kerdraon 2, G. Mann 3, F. Breitling 3, C. Vocks.
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
SHINE SEP Campaign Events: Detailed comparison of active regions AR9906 and AR0069 in the build-up to the SEP events of 21 Apr 2002 and 24 Aug 2002 D.
WG3: Extreme Events Summary N. Gopalswamy & A. Vourlidas.
Effective drift velocity and initiation times of interplanetary type-III radio bursts Dennis K. Haggerty and Edmond C. Roelof The Johns Hopkins University.
SH 51A-02 Evolution of the coronal magnetic structures traced by X-ray and radio emitting electrons during the large flare of 3 November 2003 N.Vilmer,
Hard X-ray and radio observations of the 3 June 2007 flare Nicole Vilmer Meriem Alaoui Abdallaoui Solar Activity during the Onset of Solar Cycle
Type IV Radio Bursts and Source Regions Observed by NoRH: Results Sara Petty, CUA/ GSFC Advisor: Dr. Nat Gopalswamy Type IV Radio Bursts Revisited Research.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Stuart D. BaleFIELDS SOC CDR – Science Requirements Solar Probe Plus FIELDS SOC CDR Science and Instrument Overview Science Requirements Stuart D. Bale.
Karl-Ludwig Klein
Solar Origins of the October November 2003 Extreme Events N. Gopalswamy NASA/GSFC SHINE 2004 WG3 Thursday, June 1 Big Sky, Montana Photo.
1 SEP Timing Studies: An Excruciatingly Brief Review Allan J. Tylka US Naval Research Laboratory, Washington DC SHINE 2006 Where was the CME when the SEPs.
1 SEP sources investigations with PHI aboard Solar Orbiter (SO) R. Bucik, D.E. Innes, J. Hirzberger, S.K. Solanki first ever investigations of the SEPs.
Using STEREO/EUVI to Study Active Region Magnetic Fields Anne Sandman (Rice/LMSAL) Markus Aschwanden, Jean-Pierre Wuelser, Marc DeRosa (LMSAL), David Alexander.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Coronal and Interplanetary Structures associated with type III bursts M. Pick, F. Auchère, A. Kerdraon, A. Bouteille, G. Stenborg Stereo Science Workshop,
Dong Li Purple Mountain Observatory, CAS
Physics of Solar Flares
Marina Battaglia, FHNW Säm Krucker, FHNW/UC Berkeley
Ian Richardson HILARY CANE Bruny Island and Tycho von Rosenvinge
A Relation between Solar Flare Manifestations and the GLE Onset
N. Gopalswamy, H. Xie, S. Akiyama, P. Mäkelä, S. Yashiro, I. Usoskin
Near-Relativistic Electrons Leave the Sun ~10 minutes after Type-III Solar Radio Bursts: Evidence for Acceleration by Coronal Shocks In the example of.
Alexei Struminsky1,2  1 Space Research Institute
Origin of > 100 GHz radio emission
Coronal and interplanetary radio emission as a tracer of solar energetic particle propagation Karl-Ludwig Klein (F Meudon)
EVENT of 20 JANUARY 2005 INJECTION TIME of IONS, PROTONS and ELECTRONS
SMALL SEP EVENTS WITH METRIC TYPE II RADIO BURSTS
SEP EVENTS AND THE ROLE OF FLARES AND SHOCKS
Evidence for magnetic reconnection in the high corona
Presentation transcript:

28 Oct 2003 particle stream timing X17 flare in Solar Release Time (SRT) Arrival at 1AU First radio signature (corrected) 10:5011:01:20 (<800 MHz) 10:58 (>800 MHz) Impulsive electrons11:05 (11:00-11:09)11:21-11:26 Relativistic protons11:07 (11:04-11:10)11:13-11:19 Gradual electrons11:19 (11:14-11:25)11:25:11:36 after Klassen, Krucker, et al. 2005, JGR 110, A09S04

Overview all sources UT Gap 30 km/s Red: TS Yellow: continuum with fiber bursts Mm Pmin

Fibers during relativistic (GLE) proton injection 300 MHz :12 11:13 11:14 UT AIP MHz :14 11:15 11:16 11:17 11:18 UT 11:19 AIP AOO Courtesy: M. Karlicky (time derived radio spectra)

Field lines selected by fiber burst sources (I) 11:13-11:14 and 11:17-11:19 Cartesian potential field extrapol. Method: A&A 435, 1137 (2005) Cubes: NRH source sites of fiber bursts

Field lines selected by fiber burst sources (II) Spheric potential field extrapol. (Schrijver & DeRosa 2003)

Magnetic field around AR Mm AR near AR acc. to Schrijver & DeRosa 2003

Multi-loop structure during GLE proton injection Essential mean field structures selected by fiber bursts Main flaring arcade S N