3D Rigid/Nonrigid RegistrationRegistration 1)Known features, correspondences, transformation model – feature basedfeature based 2)Specific motion type,

Slides:



Advertisements
Similar presentations
Motion.
Advertisements

Computer Vision Optical Flow
A New Block Based Motion Estimation with True Region Motion Field Jozef Huska & Peter Kulla EUROCON 2007 The International Conference on “Computer as a.
Motion Estimation I What affects the induced image motion? Camera motion Object motion Scene structure.
Feature tracking. Identify features and track them over video –Small difference between frames –potential large difference overall Standard approach:
Announcements Quiz Thursday Quiz Review Tomorrow: AV Williams 4424, 4pm. Practice Quiz handout.
Optical Flow Methods 2007/8/9.
Lecture 9 Optical Flow, Feature Tracking, Normal Flow
Announcements Project1 artifact reminder counts towards your grade Demos this Thursday, 12-2:30 sign up! Extra office hours this week David (T 12-1, W/F.
Feature matching and tracking Class 5 Read Section 4.1 of course notes Read Shi and Tomasi’s paper on.
Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking.
CSc83029 – 3-D Computer Vision/ Ioannis Stamos 3-D Computational Vision CSc Optical Flow & Motion The Factorization Method.
Announcements Project 1 test the turn-in procedure this week (make sure your folder’s there) grading session next Thursday 2:30-5pm –10 minute slot to.
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking.
Motion Computing in Image Analysis
Optical Flow Estimation
Lecture 19: Optical flow CS6670: Computer Vision Noah Snavely
Optical Flow Estimation using Variational Techniques Darya Frolova.
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Numerical Recipes (Newton-Raphson), 9.4 (first.
1 Stanford CS223B Computer Vision, Winter 2006 Lecture 7 Optical Flow Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg Corrado Slides.
Motion Field and Optical Flow. Outline Motion Field and Optical Flow Definition, Example, Relation Optical Flow Constraint Equation Assumptions & Derivation,
COMP 290 Computer Vision - Spring Motion II - Estimation of Motion field / 3-D construction from motion Yongjik Kim.
Image Primitives and Correspondence
Matching Compare region of image to region of image. –We talked about this for stereo. –Important for motion. Epipolar constraint unknown. But motion small.
KLT tracker & triangulation Class 6 Read Shi and Tomasi’s paper on good features to track
Optical Flow Digital Photography CSE558, Spring 2003 Richard Szeliski (notes cribbed from P. Anandan)
Announcements Project1 due Tuesday. Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Supplemental:
CSCE 641 Computer Graphics: Image Registration Jinxiang Chai.
3D Rigid/Nonrigid RegistrationRegistration 1)Known features, correspondences, transformation model – feature basedfeature based 2)Specific motion type,
Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,
Optical flow (motion vector) computation Course: Computer Graphics and Image Processing Semester:Fall 2002 Presenter:Nilesh Ghubade
Motion and optical flow Thursday, Nov 20 Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik.
MASKS © 2004 Invitation to 3D vision Lecture 3 Image Primitives andCorrespondence.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Tzu ming Su Advisor : S.J.Wang MOTION DETAIL PRESERVING OPTICAL FLOW ESTIMATION 2013/1/28 L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical.
The Measurement of Visual Motion P. Anandan Microsoft Research.
Computer Vision, Robert Pless Lecture 11 our goal is to understand the process of multi-camera vision. Last time, we studies the “Essential” and “Fundamental”
CSE 185 Introduction to Computer Vision Feature Tracking and Optical Flow.
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Uses of Motion 3D shape reconstruction Segment objects based on motion cues Recognize events and activities Improve video quality Track objects Correct.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm Lecture #16.
3D Imaging Motion.
Raquel A. Romano 1 Scientific Computing Seminar May 12, 2004 Projective Geometry for Computer Vision Projective Geometry for Computer Vision Raquel A.
Optical Flow. Distribution of apparent velocities of movement of brightness pattern in an image.
1 Motion Analysis using Optical flow CIS601 Longin Jan Latecki Fall 2003 CIS Dept of Temple University.
Miguel Tavares Coimbra
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
Motion Estimation I What affects the induced image motion?
Lecture 9 Feature Extraction and Motion Estimation Slides by: Michael Black Clark F. Olson Jean Ponce.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
Motion / Optical Flow II Estimation of Motion Field Avneesh Sud.
Optical flow and keypoint tracking Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
MASKS © 2004 Invitation to 3D vision Lecture 3 Image Primitives andCorrespondence.
Image Motion. The Information from Image Motion 3D motion between observer and scene + structure of the scene –Wallach O’Connell (1953): Kinetic depth.
MOTION Model. Road Map Motion Model Non Parametric Motion Field : Algorithms 1.Optical flow field estimation. 2.Block based motion estimation. 3.Pel –recursive.
Motion estimation Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/23 with slides by Michael Black and P. Anandan.
Motion and optical flow
Feature Tracking and Optical Flow
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Estimating Parametric and Layered Motion
Motion and Optical Flow
Motion Estimation Today’s Readings
Announcements more panorama slots available now
Announcements Questions on the project? New turn-in info online
Coupled Horn-Schunck and Lukas-Kanade for image processing
Announcements more panorama slots available now
Optical flow Computer Vision Spring 2019, Lecture 21
Optical flow and keypoint tracking
Presentation transcript:

3D Rigid/Nonrigid RegistrationRegistration 1)Known features, correspondences, transformation model – feature basedfeature based 2)Specific motion type, unknown correspondences – feature basedfeature based 3) Known transformation model, unknown correspondences – region basedregion based 4) Specific motion model – feature basedfeature based 5) Unknown motion model, unknown correspondences – region based

Visual Motion Jim Rehg (G.Tech)

Motion (Displacement) of Environment Image plane Scene Flow Motion Field Visual motion results from the displacement of the scene with respect to a fixed camera (or vice-versa). Motion field is the 2-D velocity field that results from a projection of the 3-D scene velocities

Examples of Visual Motion

Applications of Motion Analysis Visual tracking Structure recovery Robot (vehicle) navigation

Applications of Motion Analysis Visual tracking Structure recovery Robot (vehicle) navigation

Motion Segmentation Where are the independently moving objects (and how many are there)?

Optical Flow 2-D velocity field describing the apparent motion in an image sequence A vector at each pixel indicates its motion (between a pair of frames). Ground truthHorn and Schunk

Optical Flow and Motion Field In general the optical flow is an approximation to the motion field. When the scene can be segmented into rigidly moving objects (for example) the relationship between the two can be made precise. We can always think of the optical flow as summarizing the temporal change in an image sequence.

Computing Optical Flow Courtesy of Michael Black

Cost Function for Optical Flow Courtesy of Michael Black

Lucas-Kanade Method Brute-force minimization of SSD error can be inefficient and inaccurate Many redundant window evaluations Answer is limited to discrete u, v pairs

Lucas-Kanade Method Problems with brute-force minimization of SSD error Many redundant window evaluations Answer is limited to discrete u, v pairs Related to Horn-Schunk optical flow equations Several key innovations Early, successful use of patch-based model in low-level vision. Today these models are used everywhere. Formulation of vision problem as non-linear least squares optimization, a trend which continues to this day.

Optical Flow Estimation

Optical Flow Constraint I_t is one-to-one in the first Iteration and changes as u,v changes

Optimization

Quality of Image Patch Eigenvalues of the matrix contain information about local image structure Both eigenvalues (close to) zero: Uniform area One eigenvalue (close to) zero: Edge No eigenvalues (close to) zero: Corner

Contributions of Lucas-Kanade Basic idea of patch or template is very old (goes back at least to Widrow) But in practice patch models have worked much better than the alternatives: Point-wise differential equations with smoothness Edge-based descriptions Patches provide a simple compact enforcement of spatial continuity and support (robust) least-squares estimators.

Apparent Motion Apparent motion of objects on the image plane Caution required!! Consider a perfectly uniform sphere that is rotating but no change in the light direction Optic flow is zero Perfectly uniform sphere that is stationary but the light is changing Optic flow exists Hope – apparent motion is very close to the actual motion Courtesy: E. Trucco and A. Verri, “Introductory techniques for 3D Computer Vision”

Aperture Problem 1)The aperture problem arises due to uniformly colored surfaces in the scene. In the absence of strong lighting effects, a uniform surface in the scene appears nearly uniform in the projection. It is then impossible to determine correspondences within these regions. 2) We are able to only measure the component Of the optic flow that is in the direction of the Intensity gradient. (Unable to measure component In the tangential direction, edge).

Aperture Problem We can measure Terms that can be measured Terms to be computed Number of equations - 1 The component of the motion field that is orthogonal to the spatial image gradient is not constrained by the image brightness constancy assumption Intuitively The component of the flow in the gradient direction is determined The component of the flow parallel to an edge is unknown Courtesy: E. Trucco and A. Verri, “Introductory techniques for 3D Computer Vision”

Different physical motion but same measurable motion within a fixed window