Looking at data: relationships Scatterplots IPS chapter 2.1 © 2006 W. H. Freeman and Company.

Slides:



Advertisements
Similar presentations
Chapter 3 Examining Relationships Lindsey Van Cleave AP Statistics September 24, 2006.
Advertisements

Section 6.1: Scatterplots and Correlation (Day 1).
Chapter 3 Examining Relationships
Chapter 41 Describing Relationships: Scatterplots and Correlation.
Looking at Data - Relationships Scatterplots
CHAPTER 3 Describing Relationships
Chapter 7 Scatterplots, Association, Correlation Scatterplots and correlation Fitting a straight line to bivariate data © 2006 W. H. Freeman.
MATH 2400 Chapter 4 Notes. Response & Explanatory Variables A response variable (a.k.a. dependent variables) measures an outcome of a study. An explanatory.
LECTURE 2 Understanding Relationships Between 2 Numerical Variables
IPS Chapter 2 © 2012 W.H. Freeman and Company  2.1: Scatterplots  2.2: Correlation  2.3: Least-Squares Regression  2.4: Cautions About Correlation.
Examining Relationships Prob. And Stat. CH.2.1 Scatterplots.
Association between 2 variables We've described the distribution of 1 variable in Chapter 1 - but what if 2 variables are measured on the same individual?
Relationships Scatterplots and correlation BPS chapter 4 © 2006 W.H. Freeman and Company.
Chapter 3: Examining relationships between Data
Chapter 6: Exploring Data: Relationships Lesson Plan Displaying Relationships: Scatterplots Making Predictions: Regression Line Correlation Least-Squares.
Scatterplots. Learning Objectives By the end of this lecture, you should be able to: – Describe what a scatterplot is – Be comfortable with the terms.
LECTURE UNIT 7 Understanding Relationships Among Variables Scatterplots and correlation Fitting a straight line to bivariate data.
Looking at data: relationships Scatterplots IPS chapter 2.1 © 2006 W. H. Freeman and Company.
Chapter 6 Scatterplots and Correlation Chapter 7 Objectives Scatterplots  Scatterplots  Explanatory and response variables  Interpreting scatterplots.
IPS Chapter 2 DAL-AC FALL 2015  2.1: Scatterplots  2.2: Correlation  2.3: Least-Squares Regression  2.4: Cautions About Correlation and Regression.
1 Examining Relationships in Data William P. Wattles, Ph.D. Francis Marion University.
Examining Relationships Scatterplots
Objectives (IPS Chapter 2.1)
Correlation tells us about strength (scatter) and direction of the linear relationship between two quantitative variables. In addition, we would like to.
Objectives 2.1Scatterplots  Scatterplots  Explanatory and response variables  Interpreting scatterplots  Outliers Adapted from authors’ slides © 2012.
Chapter 4 Scatterplots and Correlation. Explanatory and Response Variables u Interested in studying the relationship between two variables by measuring.
Chapter 7 Scatterplots, Association, and Correlation.
Association between 2 variables We've described the distribution of 1 variable - but what if 2 variables are measured on the same individual? Examples?
Relationships Scatterplots and correlation BPS chapter 4 © 2006 W.H. Freeman and Company.
Chapter 4 - Scatterplots and Correlation Dealing with several variables within a group vs. the same variable for different groups. Response Variable:
3.2: Linear Correlation Measure the strength of a linear relationship between two variables. As x increases, no definite shift in y: no correlation. As.
Correlation tells us about strength (scatter) and direction of the linear relationship between two quantitative variables. In addition, we would like to.
Chapter 4 Scatterplots and Correlation. Chapter outline Explanatory and response variables Displaying relationships: Scatterplots Interpreting scatterplots.
Relationships Scatterplots and correlation BPS chapter 4 © 2006 W.H. Freeman and Company.
Relationships Scatterplots and Correlation.  Explanatory and response variables  Displaying relationships: scatterplots  Interpreting scatterplots.
Notes Chapter 7 Bivariate Data. Relationships between two (or more) variables. The response variable measures an outcome of a study. The explanatory variable.
The Practice of Statistics for Business and Economics Third Edition David S. Moore George P. McCabe Layth C. Alwan Bruce A. Craig William M. Duckworth.
Lecture 4 Chapter 3. Bivariate Associations. Objectives (PSLS Chapter 3) Relationships: Scatterplots and correlation  Bivariate data  Scatterplots (2.
Lecture 3 – Sep 3. Normal quantile plots are complex to do by hand, but they are standard features in most statistical software. Good fit to a straight.
Statistics for Business and Economics Module 2: Regression and time series analysis Spring 2010 Lecture 2: Examining the relationship between two quantitative.
Scatter plots Adapted from 350/
3. Relationships Scatterplots and correlation
Looking at Data–Relationships 2.1 Scatterplots
Chapter 3: Describing Relationships
The Practice of Statistics in the Life Sciences Fourth Edition
Chapter 3: Describing Relationships
Chapter 2 Looking at Data— Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Objectives (IPS Chapter 2.3)
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 4 - Scatterplots and Correlation
Chapter 3 Scatterplots and Correlation.
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Association between 2 variables
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Describing Relationships
Association between 2 variables
Scatterplots.
CHAPTER 3 Describing Relationships
Image from Minitab Website
Presentation transcript:

Looking at data: relationships Scatterplots IPS chapter 2.1 © 2006 W. H. Freeman and Company

Objectives (IPS chapter 2.1) Scatterplots  Scatterplots  Explanatory and response variables  Interpreting scatterplots – form, direction and strength  Outliers  Categorical variables in scatterplots  Scatterplot smoothers

StudentBeersBlood Alcohol Here, we have two quantitative variables for each of 16 students. 1) How many beers they drank, and 2) Their blood alcohol level (BAC) We are interested in the relationship between the two variables: How is one affected by changes in the other one?

StudentBeersBAC Scatterplots In a scatterplot, one axis is used to represent each of the variables, and the data are plotted as points on the graph.

Explanatory (independent) variable: number of beers Response (dependent) variable: blood alcohol content x y Explanatory and response variables A response variable measures or records an outcome of a study. An explanatory variable explains changes in the response variable. Typically, the explanatory or independent variable is plotted on the x axis, and the response or dependent variable is plotted on the y axis.

Some plots don’t have clear explanatory and response variables. Do calories explain sodium amounts? Does percent return on Treasury bills explain percent return on common stocks?

Interpreting scatterplots  After plotting two variables on a scatterplot, we describe the relationship by examining the form, direction, and strength of the association. We look for an overall pattern …  Form: linear, curved, clusters, no pattern  Direction: positive, negative, no direction  Strength: how closely the points fit the “form”  … and deviations from that pattern.  Outliers

Form and direction of an association Linear Nonlinear No relationship

Positive association: High values of one variable tend to occur together with high values of the other variable. Negative association: High values of one variable tend to occur together with low values of the other variable.

One way to think about this is to remember the following: The equation for this line is y = 5. x is not involved. No relationship: X and Y vary independently. Knowing X tells you nothing about Y.

Strength of the association The strength of the relationship between the two variables can be seen by how much variation, or scatter, there is around the main form. With a strong relationship, you can get a pretty good estimate of y if you know x. With a weak relationship, for any x you might get a wide range of y values.

This is a very strong relationship. The daily amount of gas consumed can be predicted quite accurately for a given temperature value. This is a weak relationship. For a particular state median household income, you can’t predict the state per capita income very well.

How to scale a scatterplot Using an inappropriate scale for a scatterplot can give an incorrect impression. Both variables should be given a similar amount of space: Plot roughly square Points should occupy all the plot space (no blank space) Same data in all four plots

Outliers An outlier is a data value that is unusual or unexpected in light of the overall pattern. In a scatterplot, a data point with an unusually high or low y value, given the observation’s x value.

Not an outlier: The upper right-hand point here is not an outlier of the relationship—It is what you would expect for this many beers given the linear relationship between beers/weight and blood alcohol. This point is not in line with the others, so it is an outlier of the relationship. Outliers

IQ score and Grade point average a)Describe in words what this plot shows. b)Describe the direction, shape, and strength. Are there outliers? c)What is the deal with these people?

Categorical variables in scatterplots Often, things are not simple and one-dimensional. We need to group the data into categories to reveal trends. What may look like a positive linear relationship is in fact a series of negative linear associations. Plotting different habitats in different colors allows us to make that important distinction.

Comparison of men and women racing records over time. Each group shows a very strong negative linear relationship that would not be apparent without the gender categorization. Relationship between lean body mass and metabolic rate in men and women. Both men and women follow the same positive linear trend, but women show a stronger association. As a group, males typically have larger values for both variables.

Categorical explanatory variables When the exploratory variable is categorical, you cannot make a scatterplot, but you can compare the different categories side by side on the same graph (boxplots, or mean +/  standard deviation). Comparison of income (quantitative response variable) for different education levels (five categories). But be careful in your interpretation: This is NOT a positive association, because education is not quantitative.

Example: Beetles trapped on boards of different colors Beetles were trapped on sticky boards scattered throughout a field. The sticky boards were of four different colors (categorical explanatory variable). The number of beetles trapped (response variable) is shown on the graph below. Blue White Green Yellow Board color Blue Green White Yellow Board color  Describe one category at a time. ? When both variables are quantitative, the order of the data points is defined entirely by their value. This is not true for categorical data. What association? What relationship?