Informed Search Chapter 4 Adapted from materials by Tim Finin, Marie desJardins, and Charles R. Dyer CS 63.

Slides:



Advertisements
Similar presentations
Informed search algorithms
Advertisements

Local Search Algorithms
CSC344: AI for Games Lecture 5 Advanced heuristic search Patrick Olivier
Informed Search Methods Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 4 Spring 2008.
Optimization via Search CPSC 315 – Programming Studio Spring 2009 Project 2, Lecture 4 Adapted from slides of Yoonsuck Choe.
Informed Search Methods Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 4 Spring 2005.
Trading optimality for speed…
Iterative Improvement Algorithms For some problems, path to solution is irrelevant: just want solution Start with initial state, and change it iteratively.
Review Best-first search uses an evaluation function f(n) to select the next node for expansion. Greedy best-first search uses f(n) = h(n). Greedy best.
CSC344: AI for Games Lecture 4: Informed search
Russell and Norvig: Chapter 4 CSMSC 421 – Fall 2005
Informed Search Next time: Search Application Reading: Machine Translation paper under Links Username and password will be mailed to class.
Informed Search CMSC 471 Chapter 4 Adapted from slides by
Optimization via Search CPSC 315 – Programming Studio Spring 2008 Project 2, Lecture 4 Adapted from slides of Yoonsuck Choe.
D Goforth - COSC 4117, fall Note to 4 th year students  students interested in doing masters degree and those who intend to apply for OGS/NSERC.
Local Search and Optimization
Vilalta&Eick: Informed Search Informed Search and Exploration Search Strategies Heuristic Functions Local Search Algorithms Vilalta&Eick: Informed Search.
Informed Search Chapter 4 (b)
When A* fails – Hill climbing, simulated annealing Genetic algorithms
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
An Introduction to Artificial Life Lecture 4b: Informed Search and Exploration Ramin Halavati In which we see how information.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
Informed search algorithms
Informed search algorithms
1 Shanghai Jiao Tong University Informed Search and Exploration.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
Local Search Pat Riddle 2012 Semester 2 Patricia J Riddle Adapted from slides by Stuart Russell,
For Wednesday Read chapter 6, sections 1-3 Homework: –Chapter 4, exercise 1.
For Wednesday Read chapter 5, sections 1-4 Homework: –Chapter 3, exercise 23. Then do the exercise again, but use greedy heuristic search instead of A*
Princess Nora University Artificial Intelligence Chapter (4) Informed search algorithms 1.
Local Search and Optimization Presented by Collin Kanaley.
When A* doesn’t work CIS 391 – Intro to Artificial Intelligence A few slides adapted from CS 471, Fall 2004, UBMC (which were adapted from notes by Charles.
A General Introduction to Artificial Intelligence.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Informed search algorithms Chapter 4 Slides derived in part from converted to powerpoint by Min-Yen.
Announcement "A note taker is being recruited for this class. No extra time outside of class is required. If you take clear, well-organized notes, this.
Informed Search Sections 3.5, 3.6, 4.1, 4.5 Classes 5 and 6 Adapted from materials by Marie desJardins, Tim Finin, Eric Eaton, and Charles R. Dyer CSC.
Chapter 4 (Section 4.3, …) 2 nd Edition or Chapter 4 (3 rd Edition) Local Search and Optimization.
Lecture 6 – Local Search Dr. Muhammad Adnan Hashmi 1 24 February 2016.
Local Search Algorithms and Optimization Problems
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 5 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Informed Search. S B AD E C F G straight-line distances h(S-G)=10 h(A-G)=7 h(D-G)=1 h(F-G)=1 h(B-G)=10 h(E-G)=8 h(C-G)=20 The graph above.
Local Search Algorithms CMPT 463. When: Tuesday, April 5 3:30PM Where: RLC 105 Team based: one, two or three people per team Languages: Python, C++ and.
CMPT 463. What will be covered A* search Local search Game tree Constraint satisfaction problems (CSP)
Constraints Satisfaction Edmondo Trentin, DIISM. Constraint Satisfaction Problems: Local Search In many optimization problems, the path to the goal is.
Local search algorithms In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution State space = set of "complete"
Informed Search Chapter 4 (b)
Optimization via Search
Informed Search Chapter 4 (b)
Department of Computer Science
Informed Search Chapter 4 (b)
For Monday Chapter 6 Homework: Chapter 3, exercise 7.
Informed Search Methods
Local Search Algorithms
Artificial Intelligence (CS 370D)
Informed Search Chapter 4
Informed Search Chapter 4
CSE 4705 Artificial Intelligence
Informed Search Chapter 4 (b)
Informed and Local Search
More on Search: A* and Optimization
Professor Marie desJardins,
Artificial Intelligence
Prof. Marie desJardins Fall 2009
Class #5-6 – Monday, September 15 / Wednesday, September 17
Lecture 9 Administration Heuristic search, continued
More on HW 2 (due Jan 26) Again, it must be in Python 2.7.
More on HW 2 (due Jan 26) Again, it must be in Python 2.7.
Local Search Algorithms
Local Search Algorithms
Presentation transcript:

Informed Search Chapter 4 Adapted from materials by Tim Finin, Marie desJardins, and Charles R. Dyer CS 63

Today’s Class Iterative improvement methods –Hill climbing –Simulated annealing –Local beam search Genetic algorithms Online search These approaches start with an initial guess at the solution and gradually improve until it is one.

Hill climbing on a surface of states Height Defined by Evaluation Function

Hill-climbing search Looks one step ahead to determine if any successor is better than the current state; if there is, move to the best successor. Rule: If there exists a successor s for the current state n such that h(s) < h(n) and h(s) ≤ h(t) for all the successors t of n, then move from n to s. Otherwise, halt at n. Similar to Greedy search in that it uses h(), but does not allow backtracking or jumping to an alternative path since it doesn’t “remember” where it has been. Corresponds to Beam search with a beam width of 1 (i.e., the maximum size of the nodes list is 1). Not complete since the search will terminate at "local minima," "plateaus," and "ridges."

Hill climbing example start goal -5 h = -3 h = -2 h = -1 h = 0 h = f (n) = -(number of tiles out of place)

Image from: local maximum ridge plateau Exploring the Landscape Local Maxima: peaks that aren’t the highest point in the space Plateaus: the space has a broad flat region that gives the search algorithm no direction (random walk) Ridges: flat like a plateau, but with drop-offs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.

Drawbacks of hill climbing Problems: local maxima, plateaus, ridges Remedies: –Random restart: keep restarting the search from random locations until a goal is found. –Problem reformulation: reformulate the search space to eliminate these problematic features Some problem spaces are great for hill climbing and others are terrible.

Example of a local optimum f = -6 f = -7 f = 0 start goal move up move right f = -(manhattan distance)

Gradient ascent / descent Gradient descent procedure for finding the arg x min f(x) –choose initial x 0 randomly –repeat x i+1 ← x i – η f '(x i ) –until the sequence x 0, x 1, …, x i, x i+1 converges Step size η (eta) is small (perhaps 0.1 or 0.05) Images from

Gradient methods vs. Newton’s method A reminder of Newton’s method from Calculus: x i+1 ← x i – η f '(x i ) / f ''(x i ) Newton’s method uses 2 nd order information (the second derivative, or, curvature) to take a more direct route to the minimum. The second-order information is more expensive to compute, but converges quicker. Contour lines of a function Gradient descent (green) Newton’s method (red) Image from

Simulated annealing Simulated annealing (SA) exploits an analogy between the way in which a metal cools and freezes into a minimum-energy crystalline structure (the annealing process) and the search for a minimum [or maximum] in a more general system. SA can avoid becoming trapped at local minima. SA uses a random search that accepts changes that increase objective function f, as well as some that decrease it. SA uses a control parameter T, which by analogy with the original application is known as the system “temperature.” T starts out high and gradually decreases toward 0.

Simulated annealing (cont.) A “bad” move from A to B is accepted with a probability P(move A→B ) = e ( f (B) – f (A)) / T The higher the temperature, the more likely it is that a bad move can be made. As T tends to zero, this probability tends to zero, and SA becomes more like hill climbing If T is lowered slowly enough, SA is complete and admissible.

The simulated annealing algorithm

Local beam search Begin with k random states Generate all successors of these states Keep the k best states Stochastic beam search: Probability of keeping a state is a function of its heuristic value

Genetic algorithms Similar to stochastic beam search Start with k random states (the initial population) New states are generated by “mutating” a single state or “reproducing” (combining via crossover) two parent states (selected according to their fitness) Encoding used for the “genome” of an individual strongly affects the behavior of the search Genetic algorithms / genetic programming are a large and active area of research

In-Class Paper Discussion Stephanie Forrest. (1993). Genetic algorithms: principles of natural selection applied to computation. Science 261 (5123): 872–878.

Class Exercise: Local Search for Map/Graph Coloring

Online search Interleave computation and action (search some, act some) Exploration: Can’t infer outcomes of actions; must actually perform them to learn what will happen Competitive ratio = Path cost found* / Path cost that could be found** * On average, or in an adversarial scenario (worst case) ** If the agent knew the nature of the space, and could use offline search Relatively easy if actions are reversible ( ONLINE-DFS-AGENT ) LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on experience More about these issues when we get to the chapters on Logic and Learning!

Summary: Informed search Best-first search is general search where the minimum-cost nodes (according to some measure) are expanded first. Greedy search uses minimal estimated cost h(n) to the goal state as measure. This reduces the search time, but the algorithm is neither complete nor optimal. A* search combines uniform-cost search and greedy search: f (n) = g(n) + h(n). A* handles state repetitions and h(n) never overestimates. –A* is complete and optimal, but space complexity is high. –The time complexity depends on the quality of the heuristic function. –IDA* and SMA* reduce the memory requirements of A*. Hill-climbing algorithms keep only a single state in memory, but can get stuck on local optima. Simulated annealing escapes local optima, and is complete and optimal given a “long enough” cooling schedule. Genetic algorithms can search a large space by modeling biological evolution. Online search algorithms are useful in state spaces with partial/no information.