Krzysztof /Kris Murawski UMCS Lublin Frequency shift and amplitude alteration of waves in random fields
Outline: 1.Doppler effect 2.Motivation 3.Modelling of random waves 4.Summary
Doppler effect
Acoustic waves in a homogeneous medium Still equilibrium e = const., p e = const, V e = 0 Small amplitude waves P tt – c s 2 p xx = 0 c s 2 = p e / e Dispersion relation 2 = c s 2 k 2 Flowing equilibrium (Ve 0) - Doppler effect = c s k + V e k
Acoustic waves in an inhomogeneous medium Equilibrium e (x), p e = const, V e = 0 Small amplitude waves P tt – c s 2 (x) p xx = 0 Scattering – Bragg condition K i k s = k h i s = h
Global solar oscillations
P-Mode Spectrum
Solar granulation
Euler equations t + ( V) = 0 [V t + (V )V] = - p + g p t + (pV) = (1- ) p V
Sound waves in simple random fields A space-dependent random flow One-dimensional ( / y= / z=0) equilibrium: e = 0 = const. u e = u r (x) p e = p 0 = const.
A weak random field u r (x) = 0 The perturbation technique dispersion relation 2 – c s 2 k 2 = 4k 2 - E( -k) d / [ 2 - c s 2 2 ] For instance, Gaussian spectrum E(k) = ( 2 l x / exp(-k 2 l x 2 )
Approximate solution Expansion = c 0 k + 2 2 + 2 l x /c 0 = - 2/ 1/2 k 2 l x 2 D(2kl x ) - i k 2 l x 2 [1-exp(-4k 2 l x 2 )] D( ) = exp(- 2 ) 0 exp(t 2 ) dt Dawson's integral Dispersion relation
Re( 2 ) Im ( 2 ) Re( 2 ) < 0 frequency reduction Red shift Im( 2 ) < 0 amplitude attenuation
Typical realization of a Random Gaussian field
Mędrek i Murawski (2002) Random waves – numerical simulations
(Murawski & Mędrek 2002) Numerical (asterisks, diamonds) vs. analytical (dashed lines) data
Sound waves in random fields = Re r - 0, a = Im r - 0 0) a red (blue) shift a 0) attenuation (amplification) r (x) r (t) u r (x)u r (t)p r (x)p r (t) >0 <0>0<0 a <0>0<0>0<0>0
Sound waves in complex fields An example: r (x,t) Dispersion relation 2 - K 2 = 2 - - ( 2 E( -K, - )) d d / ( 2 - 2 ) K = kl x = l x /c s
Wave noise E(K, ) = 2 / E(K) - r (K)) Spectrum Dispersionless noise r (K) = c r K r (x,t) = r (x-c r t,t=0)
2 = K/(2 3/2 ) [c r 2 /(c r 2 -1) K D(2/c + K)] + i K 2 /(4 [1/c - +|c - / c + |1/c + exp(-4K 2 /c + 2 )] + i K 2 /(4 [1/c - +|c - / c + |1/c + exp(-4K 2 /c + 2 )] Dispersion relation: c = c r 1
Re 2 Im 2
c r = -2 cr = 2cr = 2 Re( 2 ) Im( 2 )
K=2 An analogy with Landau damping in plasma physics Re( 2 ) Im( 2 )
Conclusions Random fields alter frequencies and amplitudes of waves Numerical verification of analytical results (Nocera et al. 2001, Murawski et al. 2001) A number of problems remain to be solved both analytically and numerically