Efficient Simulations of Gas-Grain Chemistry Using Moment Equations M.Sc. Thesis by Baruch Barzel preformed under the supervision of Prof. Ofer Biham.

Slides:



Advertisements
Similar presentations
School of Chemistry, University of Nottingham,UK 1 Why Does Star Formation Need Surface Science? Using Laboratory Surface Science to Understand the Astronomical.
Advertisements

Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Jonathan Rawlings (Lured over to the dark side by Neal Evans) University College London.
Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University Probing the Gas-Grain Interaction Applications of Laboratory.
Cloudy u Accurate simulation of physical processes at the atomic & molecular level –“universal fitting formulae” to atomic processes fail when used outside.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
Observations of deuterated molecules as probes of the earliest stages of star formation. Helen Roberts University of Manchester.
Max P. Katz, Wayne G. Roberge, & Glenn E. Ciolek Rensselaer Polytechnic Institute Department of Physics, Applied Physics and Astronomy.
By Baruch Barzel and Prof. Ofer Biham Efficient Simulations of Gas-Grain Chemistry Using Moment Equations.
The Interstellar Medium Physical Astronomy Professor Lee Carkner Lecture 12.
4. Modeling 3D-periodic systems Cut-off radii, charges groups Ewald summation Growth units, bonds, attachment energy Predicting crystal structures.
The abundances of gaseous H 2 O and O 2 in dense cloud cores Eric Herbst & Helen Roberts The Ohio State University.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
The Chemistry in Interstellar Clouds Eric Herbst Departments of Physics, Astronomy, and Chemistry The Ohio State University.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Gas and Dust (Interstellar) Astrochemistry.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions II. Chemistry.
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Collaborators : Valentine Wakelam (supervisor)
Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s.
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
ChE 553 Lecture 12 Theory Of Sticking 1. Objective Develop a qualitative understanding of sticking Go over some models for the process 2.
ISM & Astrochemistry Lecture 2. Protoplanetary Nebula The evolutionary stage between evolved stars and planetary nebula CRL 618 – many organic molecules.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
A Gas Grain Model of ISM Cores with Moment Equations to Treat Surface Chemistry Yezhe Pei & Eric Herbst The Ohio State University June 25 th, th.
Qiang Chang, Eric Herbst Chemistry department, University of Virginia
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Interstellar Chemistry: Triumphs & Shortcomings.
Water in Laboratory J.R. Brucato INAF-Arcetri Astrophysical Observatory, Firenze Italy Water in Asteroids and Meteorites Paris.
Astrochemistry Les Houches Lectures September 2005 Lecture 1
Lecture 30: The Milky Way. topics: structure of our Galaxy structure of our Galaxy components of our Galaxy (stars and gas) components of our Galaxy (stars.
The Interstellar Medium and Star Formation Material between the stars – gas and dust.
Jacqueline Keane NASA Astrobiology Pavel Senin University of Hawaii at
Planetary Nebulae as a Testground of Interstellar Molecular Chemistry Tatsuhiko Hasegawa.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
FORMATION OF MOLECULAR HYDROGEN ON A GRAPHITE SURFACE S. Morisset [1], F. Aguillon [2], M. Sizun [2], V. Sidis [2] [1] Laboratoire de Mécanique, Physique.
Testing grain-surface chemistry in massive hot-core regions and the laboratory (A&A, 465, 913 and A&A submitted) Suzanne Bisschop Jes Jørgensen, Ewine.
Moles and gas volumes At the end of this section you should be able to calculate the amount of substance in moles, using gas volume.
Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester.
Lecture 20…The Formation of Stars: where and how Nature provides a hint: young star clusters The proto- typical object.
Astrochemistry University of Helsinki, December 2006 Lecture 3 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
Chapter 11 The Interstellar Medium
Chapter 11 The Interstellar Medium
ASTROPHYSICAL MODELLING AND SIMULATION Eric Herbst Departments of Physics, Chemistry, and Astronomy The Ohio State University.
Astrochemistry Les Houches Lectures September 2005 Lecture 2 T J Millar School of Physics and Astronomy University of Manchester PO Box88, Manchester M60.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY The Production of Complex Molecules in Interstellar and Circumstellar Sources.
Methanol Photodissociation Branching Ratios and Their Influence on Interstellar Organic Chemistry Thank you Susanna. So I’ve been combining both laboratory.
Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
IC-1/38 Lecture Kinetics IC-2/38 Lecture What is Kinetics ? Analysis of reaction mechanisms on the molecular scale Derivation.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Complex Organic Molecules formation on Interstellar Grains Qiang Chang Xinjiang Astronomical Observatory Chinese Academy of Sciences April 22, 2014.
Introduction to kinetics and catalysis Ing. Marcela Králová Ph.D., CEITEC EEA Grants Norway Grants.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Interstellar and Circumstellar Chemistries: The Role of Neutral-Neutral Reactions.
Dust formation theory in astronomical environments
On the Formation of Molecules on Interstellar Grains
Chemistry in Interstellar Space
Atomistic simulations of contact physics Alejandro Strachan Materials Engineering PRISM, Fall 2007.
Atomistic materials simulations at The DoE NNSA/PSAAP PRISM Center
Interstellar Ice Formation on Dust Grains
Surface Chemistry: New Methods, New Results
Investigating the Cosmic-Ray Ionization Rate in the Galactic Interstellar Medium through Observations of H3+ Nick Indriolo,1 Ben McCall,1 Tom Geballe,2.
From Inter-stellar Chemistry to Intra-cellular Biology
formation of H2CO and CH3OH
Dust formation theory in astronomical environments
Approach to Nucleation in Astronomical Environments
Presentation transcript:

Efficient Simulations of Gas-Grain Chemistry Using Moment Equations M.Sc. Thesis by Baruch Barzel preformed under the supervision of Prof. Ofer Biham

2 Complexity in the Universe

3 Horse-Head Nebula

The Interstellar Clouds (ISC)

The Interstellar Clouds Molecular and atomic H Density: ~ (atoms cm -3 ) Gas Temperature: K

6 The Role of H 2 H2H2 Complexity Complex Molecules Star Formation

7 The H 2 Puzzle H 2 Production in the gas phase: H + H → H 2 Gas-Phase Reactions Cannot Account for the Observed Production Rates Observed Production Rates in ISC: R H ~ (mol cm -3 s -1 ) 2

8 The Solution

9 The Interstellar Dust Grains Composition: Carbons, Silicates, Olivine, H 2 O, SiC Temperature: ~5-20 K Size Range: (cm) → sites Activation Energies: (meV) E 1 (disorp)E 0 (diffus)Material Carbon Olivine

10 kBTkBT -E0-E0 A H = (1/S) e = F H - W H ‹ N H › - 2A H ‹ N H › 2 d ‹ N H › dt The Rate Equation Incoming flux Desorption Recombination W H = e kBTkBT -E1-E1 The Production Rate of H 2 Molecules: R H = A H ‹ N H › 2 (mol s -1 ) 2

11 Mean-field approximation = F H - W H ‹ N H › - 2A H ‹ N H › 2 d ‹ N H › dt When the Rate Equation Fails Neglects fluctuations Ignores discretization Not valid for small grains and low flux

12 Probabilistic Approach P(0) P(1) P(N H -1) P(N H ) P(N H +1) P(N H +2) P(N max ) Flux term: F H [P H (N H -1) - P H (N H )] Desorption term: W H [(N H +1)P H (N H +1) - N H P H (N H )] Reaction term: A H [(N H +2)(N H +1)P H (N H +2) - N H (N H -1)P H (N H )] FHFH WHWH AHAH

13 The Master Equation = F H [P H (N H -1) - P H (N H )] + W H [(N H +1)P H (N H +1) - N H P(N H )] + A H [(N H +2)(N H +1)P H (N H +2) - N H (N H -1)P H (N H )] dP H (N H ) dt ‹ N H › =  N H P H (N H ) N H = 0 S R H = A H ( ‹ N H 2 › - ‹ N H › ) 2

14 R H vs. Grain Size 2 F H = S (atoms s -1 ) E 0 = 22 E 1 =32 (meV) T surface = 10 K

15 Complex Reactions OHO2O2 H2H2 O H H2OH2O The parameters: F i ; W i ; A i (i=1,2,3) 13 2

16 The Rate Equations = F 1 - W 1 ‹ N 1 › - 2A 1 ‹ N 1 › 2 - (A 1 +A 2 ) ‹ N 1 ›‹ N 2 › - (A 1 +A 3 ) ‹ N 1 ›‹ N 3 › d ‹ N 1 › dt = F 2 – W 2 ‹ N 2 › - 2A 2 ‹ N 2 › 2 - (A 1 +A 2 ) ‹ N 1 ›‹ N 2 › d ‹ N 2 › dt = F 3 - W 3 ‹ N 3 › - (A 1 +A 3 ) ‹ N 1 ›‹ N 3 › +(A 1 +A 2 ) ‹ N 1 ›‹ N 2 › d ‹ N 3 › dt

17 The Master Equation P(N 1,N 2,N 3 ) =  F i [P(…,N i -1,…)-P(N 1,N 2,N 3 )] +  W i [(N i +1)P(..,N i +1,..)-N i P(N 1,N 2,N 3 )] +  A i [(N i +2)(N i +1)P(..,N i +2,..)-N i (N i -1)P(N 1,N 2,N 3 )]  + (A 1 +A 2 )[(N 1 +1)(N 2 +1)P(N 1 +1,N 2 +1,N 3 -1)-N 1 N 2 P(N 1,N 2,N 3 )  + (A 1 +A 3 )[(N 1 +1)(N 3 +1)P(N 1 +1,N 2,N 3 +1)-N 1 N 3 P(N 1,N 2,N 3 ) 3 i=1 3 i=1 2 i=1

18 P(N 1,N 2,N 3 ) =  F i [P(…,N i -1,…)-P(N 1,N 2,N 3 )] +  W i [(N i +1)P(..,N i +1,..)-N i P(N 1,N 2,N 3 )] +  A i [(N i +2)(N i +1)P(..,N i +2,..)-N i (N i -1)P(N 1,N 2,N 3 )]  + (A 1 +A 2 )[(N 1 +1)(N 2 +1)P(N 1 +1,N 2 +1,N 3 -1)-N 1 N 2 P(N 1,N 2,N 3 )  + (A 1 +A 3 )[(N 1 +1)(N 3 +1)P(N 1 +1,N 2,N 3 +1)-N 1 N 3 P(N 1,N 2,N 3 ) 3 i=1 3 i=1 2 i=1 R ij = (A i + A j ) ‹ N i N j › R ii = A i ( ‹ N i 2 › - ‹ N i › )

19 The Rate vs. The Master Rate equations: Mean field approximation High efficiency Not reliable for surface reactions (at low coverage) Master equation: Microscopic probability distribution Accurate model of grain surface reactions Low efficiency (exponential growth) Hard work

20 The Moment Equations ‹ N H k › =  N H k P H (N H ) NH=0NH=0 8 After applying the summation: ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 ›

21 Truncating the Equations 1. Set the cutoff 2. Express the (k+1)th moment by the first k moments ‹ N H 1 › = P H (1) + 2P H (2) + +kP H (k) ‹ N H 2 › = P H (1) P H (2) + +k 2 P H (k) ‹ N H k › = P H (1) + 2 k P H (2) + +k k P H (k) P H (N H > k) = 0

22 Truncating the Equations 1. Set the cutoff 2. Express the (k+1)th moment by the first k moments 3. Plug into the first k moment equations ‹ N H 1 › = P H (1) + 2P H (2) + + kP H (k) ‹ N H 2 › = P H (1) P H (2) + +k 2 P H (k) ‹ N H k › = P H (1) + 2 k P H (2) + +k k P H (k) P H (N H > k) = 0 ‹ N H k+1 › =  C i ‹ N H i › i=0 k

23 Moment Equations for H 2 Production ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 › 1. Set the cutoff → k=2 ‹ N H 3 › = 3 ‹ N H 2 › - 2 ‹ N H › 2. Reduce excessive moments → 3. Plug into the equations…

24 ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H - 4A H ) ‹ N H › + (8A H - W H ) ‹ N H 2 › - 4A H ‹ N H 3 › ‹ N H › = F H + (2A H - W H ) ‹ N H › - 2A H ‹ N H 2 › ‹ N H 2 › = F H + (2F H + W H + 4A H ) ‹ N H › - (4A H + 2W H ) ‹ N H 2 › Moment Equations for H 2 Production ‹ N H 3 › = 3 ‹ N H 2 › - 2 ‹ N H › 1. Set the cutoff → k=2 2. Reduce excessive moments → 3. Plug into the equations…

25 R H vs. Grain Size 2

26 Moments for Complex Networks OH O2O2 H2H2 O H H2OH2O The probability: P(N 1,N 2,N 3 ) The moments: ‹ N 1 a N 2 b N 3 c › The cutoff: N i < k i The challenge: Reduction of the excessive moments ‹ N 1 a N 2 b N 3 c › =  C lnm ‹ N 1 l N 2 n N 3 m › lmn=0 k-1

27 Reduction of Excessive Moments The probability: P(N 1,N 2 ) V(a,b) M (N 1,N 2,a,b) P(N 1,N 2 ) v = M p ‹ N 1 a N 2 b › =  C nm ‹ N 1 n N 2 m › mn=0 k-1 ‹ N 1 a N 2 b › =  N 1 a N 2 b P(N 1,N 2 ) N 1 N 2 =0 k-1

28 ‹N1›,‹N1›, ‹N3›‹N3›‹N2›,‹N2›, Setting the Cutoffs OHO2O2 H2H2 O H H2OH2O ‹N1N2›‹N1N2› ‹N1N3›‹N1N3› ‹N22›‹N22› ‹N12›‹N12› 3 vertices + 2 edges + 2 loops = 7 equations

29 Production Rates vs. Grain Size

30 Multi-Specie Network H 2 COH 3 CO OH HCOH OCO CO 2 + H O2O2 H2H2 HCO H 2 CO OH CO 2 H 3 COCH 3 CO H2OH2O 7 vertices 8 edges 2 loops 17 equations +

31 Production Rates vs. Grain Size

32 Summary The advantages of the moment equations:  Reliable even for low coverage  Efficient  Linear  Easy to incorporate into rate equation models  Directly generate the required moments Further applications should be tested.

33 Revealing the Trick The moment equations validity - For small grainsFor large grainsCutoff justifiedP H (N H ) is Poisson Second order: (  << 1) The equations are valid First order: (  ≈ 1) Production rate is accurate but population size maydeviate Moment equations valid under all circumstances