C. Blondel, W. Chaïbi, C. Delsart and C. Drag Laboratoire Aimé Cotton, Univ Paris-sud, Bât. 505, Campus d’Orsay, 91405 Orsay Cedex, France PHOTODETACHMENT.

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

Physics of fusion power
Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Photodetachment microscopy in a magnetic field Christophe Blondel Laboratoire Aimé-Cotton, Centre national de la recherche scientifique, université Paris-
Microscopy Lecture I.
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
The specific charge of the electron
Possibility of narrow-band THz CSR by means of transient H/L coupling NewSUBARU, LASTI, University of Hyogo Y. Shoji.
Durham University – Atomic & Molecular Physics group
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Ultra Low Vertical Emittance at the Australian Light Source Mark Boland on behalf of Rohan Dowd 1.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Generation of short pulses
Lecture 8: Measurement of Nanoscale forces II. What did we cover in the last lecture? The spring constant of an AFM cantilever is determined by its material.
P461 - Molecules 21 MOLECULAR ENERGY LEVELS Have Schrod. Eq. For H 2 (same ideas for more complicated). For proton and electron 1,2 real solution: numeric.
Frictional Cooling Studies at Columbia University &Nevis Labs Raphael Galea Allen Caldwell Stefan Schlenstedt (DESY/Zeuthen) Halina Abramowitz (Tel Aviv.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
A Biomechanical Comparison of Cancerous and Normal Cell Plasma Membranes Olivia Beane Syracuse University BRITE 2009.
Mass Spectrometry.
F. Cheung, A. Samarian, W. Tsang, B. James School of Physics, University of Sydney, NSW 2006, Australia.
Physics of fusion power Lecture 7: particle motion.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
Lecture 3 Atom Interferometry: from navigation to cosmology Les Houches, 26 Sept E.A. Hinds Centre for Cold Matter Imperial College London.
F.M.H. Cheung School of Physics, University of Sydney, NSW 2006, Australia.
Atomic Structure 2.2: The Mass Spectrometry. Operation of Mass Spec Describe and explain the operation of a mass spectrometer What’s it for? A mass spectrometer.
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
Fragmentation mechanisms for Methane induced by electron impact
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Simultaneous Delivery of Parallel Proton Beams with the EURISOL Driver
BROOKHAVEN SCIENCE ASSOCIATES BIW ’ 06 Lepton Beam Emittance Instrumentation Igor Pinayev National Synchrotron Light Source BNL, Upton, NY.
Powerpoint Templates Page 1 Electric dipole Transition moment.
Frictional Cooling NUFACT02 Studies at Columbia University & Nevis Labs Raphael Galea Allen Caldwell Stefan Schlenstedt (DESY/Zeuthen) Halina Abramowitz.
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Plasma diagnostics using spectroscopic techniques
Free Electron Lasers (I)
The Apparatus…. Ionic target studies…. Neutral target studies…. Queens University Belfast University College London.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
5 kV  = 0.5 nm Atomic resolution TEM image EBPG (Electron beam pattern generator) 100 kV  = 0.12 nm.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
1 30 Outline Maxwell’s Equations and the Displacement Current Electromagnetic Waves Polarization.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
OPTOFLUIDIC DEVICES FOR SINGLE CELL MANIPULATION Ana Rita Ribeiro, Ariel Guerreiro, Pedro Jorge New Challenges in the European Area - Young Scientist's.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
These data show the first time that any structure has ever been observed at this transition for negative sulfur ions or any isoelectronic species. The.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
NON-INTERCEPTING DIAGNOSTIC FOR HIGH BRIGHTNESS ELECTRON BEAMS USING OPTICAL DIFFRACTION RADIATION INTERFERENCE (ODRI) A. Cianchi #1,2, M. Castellano 3,
Journal Club február 16. Tóvári Endre Resonance-hybrid states in a triple quantum dot PHYSICAL REVIEW B 85, (R) (2012) Using QDs as building.
Vibrational Motion Harmonic motion occurs when a particle experiences a restoring force that is proportional to its displacement. F=-kx Where k is the.
RICH MEETING - CERN - April 21 st 2004 Università degli Studi di Milano Bicocca Variation of Refractive Index inside an Aerogel Block Davide Perego.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Secondary Electron Emission in the Limit of Low Energy and its Effect on High Energy Physics Accelerators A. N. ANDRONOV, A. S. SMIRNOV, St. Petersburg.
2.1.1 – 2 Electric Fields An electric field is the region around a charged object where a force is exerted on a charged object. the force exerted on a.
Python based particle tracking code for monitor design Kenichirou Satou J-PARC/KEK.
Example: Magnetic Quadrupole Lens
C. Blondel, C. Delsart, C. Drag, R. J. Peláez & M. Vandevraye
Control of laser wakefield amplitude in capillary tubes
R.A.Melikian,YerPhI, , Zeuthen
BEAMLINE MAGNETS FOR ALPHA-G
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray
Accelerator Physics Synchrotron Radiation
He Zhang MEIC R&D Meeting, 07/09/2015
Presentation transcript:

C. Blondel, W. Chaïbi, C. Delsart and C. Drag Laboratoire Aimé Cotton, Univ Paris-sud, Bât. 505, Campus d’Orsay, Orsay Cedex, France PHOTODETACHMENT MICROSCOPY IN A MAGNETIC FIELD The principle of photodetachment microscopy Effect of a magnetic field : longitudinal case Experimental setup Quantum parameters : Nomber of rings Mean interfrange Detector ion z0z0 The analytic formula : Source and simple lens doublet ("einzellens") 2,5,9,10 : Deflection plates 3,6,8 : Simple lenses 4 : Wien filter 7 : Deflection 11 : Focalisation quadrupole 12 : Deceleration plates 13 : Interection zone Beam cinetic energy : 300 to 500 eV  60 to 80 km.s -1 x y detector : res. 65 µm FWHM 1 electron each 0.1 ms to 1 ms z 0 = m F between 150 and 450 V/m Dye laser = 710 nm (~ 596 nm) P = 100 to 400 mW stability ~ 10 MHz for 30 min  (mes.) ~ waist 20 to 40 µm Photodetachment microscopy: C. Blondel et al., Phys. Rev. Lett. 77, 3755 (1996) C D F U negative ion neutral atom h  eAeA Si - SA0872b R j F = 427 Vm -1 ± 4 Vm -1  = ± cm -1 Accuracy : ± 1 µeV Electron affinities Fluor A( 19 F) = (20) cm -1 Oxygene A( 16 O) = (7) cm -1 Silicium A( 28 Si) = (8) cm -1 Sulfur A( 32 S) = (42) cm -1 Eur. Phys. J. D33, 335 (2005) Oxygene A( 17 O) = (22) cm -1 A( 18 O) = (20) cm -1 Phys. Rev. A64, (2001) Oxygene E( 2 P 1/2 )  E( 2 P 3/2 ) = (14) cm -1 Sulfur 32 S  : E( 2 P 1/2 )  E( 2 P 3/2 ) = (34) cm S: E( 3 P 1 )  E( 3 P 2 ) = (32) cm -1 J. Phys. B39, 1409 (2006) OH A( 16 O 1 H) = (7) cm -1 J. Chem. Phys. 122, (2005) SH A( 32 S 1 H) = (12) cm -1 J. Mol. Spec. 239, 11 (2006) the Green function is known Kramer et al., Europhys. Lett. 56, 471 (2001) 2-trajectory interference: same phase as for B = 0 (invariance) 4-trajectory interference jet d’ion négatifs détecteur solénoïde 2 m 23 cm 42 cm 62 cm 13 cm laser Longitudinal and transverse magnetic field coils detector B//F solenoid negative ion beam laser transverse B  F coils Jet S Classical trajectories Measured pattern diameter D(I) Measured distance R(I) of the pattern centre to the source projection on the detector Calculated fit of the theoretical value of R(I) 100 mA ≡ 126 µT = 1.26 G Effect of a magnetic field : transverse case Trajectory and fringe shifts ? Negative ion General problem: in the presence of a Lorentz force, will the trajectory shift be equal to the shift of the interference fringes ? What does the ring pattern become in the presence of a transverse magnetic field ? Experimental results Laser The interference phase remains invariant ! B  0B  0 B  0B  0 ± cm -1 dispersion due to electric field inhomogeneities Photoionization microscopy: C. Nicole et al., Phys. Rev. Lett. 88, (2002) Molecular photodetachment microscopy : C. Delsart et al., Phys. Rev. Lett. 89, (2002) American Journal of Physics 66, 38 (1998) F = 423 Vm -1  = 1.2 cm -1 0 =  m a = 0.35  m Fq m 2/    Isotopic shift Fine structure of atoms and ions Molecules Geometrical effect on the interference patterns As expected: Experimental results Influence of a magnetic field on the interference phase i.e. at 1 st order proportionally to the B flux : Defining the momentum : The local phase shfit The interference pattern moves as a whole ! In the far-field approximation The shift of the envelope Fringe shift vs. trajectory shift Do electron affinities vary with the magnetic field ? Geometric phase Magnetic phase Trajectory curvature will make a contribution at a higher order. The expected phase variation, at a fixed position on the detector, will be : One gets a wave-function The phase of the interferogram will thus change by Numerically : z a Fz 0 Détecteur B-dependent according to and the phase shift The fringe displacement is such that Comparing the gradient One gets: Principle: Y.N. Demkov et al., JETP Lett. 34, 403 (1981) F ~ 291 V/m = nm B = 1.9 µTB = 27.8 µTB = 56.1 µT B = 82 µT B = µTB = µT F ~ 195 V/mB = T