Costas Busch - RPI1 CSCI-2400 Models of Computation.

Slides:



Advertisements
Similar presentations
Pushdown Automata Section 2.2 CSC 4170 Theory of Computation.
Advertisements

CFG => PDA Sipser 2 (pages ).
CFG => PDA Sipser 2 (pages ). CS 311 Fall Formally… A pushdown automaton is a sextuple M = (Q, Σ, Γ, δ, q 0, F), where – Q is a finite set.
Courtesy Costas Busch - RPI1 A Universal Turing Machine.
Costas Busch - RPI1 Pushdown Automata PDAs. Costas Busch - RPI2 Pushdown Automaton -- PDA Input String Stack States.
Courtesy Costas Busch - RPI1 Non Deterministic Automata.
1 CSCI-2400 Models of Computation. 2 Computation CPU memory.
Courtesy Costas Busch - RPI1 Pushdown Automata PDAs.
Fall 2006Costas Busch - RPI1 Deterministic Finite Automata And Regular Languages.
Recursively Enumerable and Recursive Languages
Fall 2005Costas Busch - RPI1 CSCI-2400 Models of Computation.
CS Master – Introduction to the Theory of Computation Jan Maluszynski - HT Lecture 1 Introduction Jan Maluszynski, IDA, 2007
Fall 2006Costas Busch - RPI1 Pushdown Automata PDAs.
Costas Busch - RPI1 Context-Free Languages. Costas Busch - RPI2 Regular Languages.
Courtesy Costas Busch - RPI1 Context-Free Languages.
CS311 Automata and Complexity Theory. Admistrative Stuff Instructor: Shahab Baqai Room # 428, Ext 4428 Lectures:Mon & Wed 1530 – 1710.
Fall 2006Costas Busch - RPI1 Non-Deterministic Finite Automata.
Courtesy Costas Busch - RPI1 Reducibility. Courtesy Costas Busch - RPI2 Problem is reduced to problem If we can solve problem then we can solve problem.
Fall 2006Costas Busch - RPI1 The Chomsky Hierarchy.
Fall 2006Costas Busch - RPI1 CSCI-2400 Models of Computation.
Finite Automata Costas Busch - RPI.
Fall 2003Costas Busch - RPI1 Turing Machines (TMs) Linear Bounded Automata (LBAs)
Prof. Busch - LSU1 Pushdown Automata PDAs. Prof. Busch - LSU2 Pushdown Automaton -- PDA Input String Stack States.
Fall 2005Costas Busch - RPI1 Pushdown Automata PDAs.
Grammars, Languages and Finite-state automata Languages are described by grammars We need an algorithm that takes as input grammar sentence And gives a.
1 CSCI 2400 section 3 Models of Computation Instructor: Costas Busch.
1 Theory of Computation 計算理論 2 Instructor: 顏嗣鈞 Web: Time: 9:10-12:10 PM, Monday Place: BL 103.
Introduction to the Theory of Computation
CSC312 Automata Theory Lecture # 1 Introduction.
1 An Introduction to Formal Languages and Automata Provided by : Babak Salimi webAdd:
Fall 2006Costas Busch - RPI1 Deterministic Finite Automaton (DFA) Input Tape “Accept” or “Reject” String Finite Automaton Output.
Push-down Automata Section 3.3 Fri, Oct 21, 2005.
CSC312 Automata Theory Lecture # 1 Introduction.
CSC312 Automata Theory Lecture # 1 Introduction.
1 Theory of Computation 計算理論 2 Instructor: 顏嗣鈞 Web: Time: 9:10-12:10 PM, Monday Place: BL.
Complexity and Computability Theory I Lecture #11 Instructor: Rina Zviel-Girshin Lea Epstein.
Models of Computation. Computation: Computation is a general term for any type of information processing information processing CPU memory.
9.7: Chomsky Hierarchy.
Models of Computation نظریه زبان ها و ماشین ها Iranai.blog.ir IRANAI.BLOG.ir _
CSCI 3130: Automata theory and formal languages Andrej Bogdanov The Chinese University of Hong Kong Pushdown.
Pushdown Automata Hopcroft, Motawi, Ullman, Chap 6.
Copyright © Curt Hill Other Automata Pushdown through Turing machines.
Costas Busch - RPI1 Decidability. Costas Busch - RPI2 Consider problems with answer YES or NO Examples: Does Machine have three states ? Is string a binary.
Fall 2006Costas Busch - RPI1 RE languages and Enumerators.
CSCI 2670 Introduction to Theory of Computing September 22, 2004.
Recap: Nondeterministic Finite Automaton (NFA) A deterministic finite automaton (NFA) is a 5-tuple (Q, , ,s,F) where: Q is a finite set of elements called.
Formal Foundations-II [Theory of Automata]
Recursively Enumerable and Recursive Languages
CS-300 Theory of Computation 2nd Sem 2017 Lecture 1.
Introduction to the Theory of Computation
Models of Computation.
PDAs Accept Context-Free Languages
Pushdown Automata PDAs
Pushdown Automata PDAs
Pushdown Automata PDAs
Pushdown Automata PDAs
AUTOMATA THEORY VI.
Undecidable Problems (unsolvable problems)
Turing acceptable languages and Enumerators
CSE322 The Chomsky Hierarchy
CSCI-2400 Models of Computation Costas Busch - RPI.
Non-Deterministic Finite Automata
A Universal Turing Machine
Pushdown automata a_introduction.htm.
CSCI-2400 Models of Computation.
The Off-Line Machine Input File read-only (once) Input string
Principles of Computing – UFCFA3-30-1
Formal Definitions for Turing Machines
The Chomsky Hierarchy Costas Busch - LSU.
Presentation transcript:

Costas Busch - RPI1 CSCI-2400 Models of Computation

Costas Busch - RPI2 Computation CPU memory

Costas Busch - RPI3 CPU input memory output memory Program memory temporary memory

Costas Busch - RPI4 CPU input memory output memory Program memory temporary memory compute Example:

Costas Busch - RPI5 CPU input memory output memory Program memory temporary memory compute

Costas Busch - RPI6 CPU input memory output memory Program memory temporary memory compute

Costas Busch - RPI7 CPU input memory output memory Program memory temporary memory compute

Costas Busch - RPI8 Automaton CPU input memory output memory Program memory temporary memory Automaton

Costas Busch - RPI9 Different Kinds of Automata Automata are distinguished by the temporary memory Finite Automata: no temporary memory Pushdown Automata: stack Turing Machines: random access memory

Costas Busch - RPI10 input memory output memory temporary memory Finite Automaton Finite Automaton Example: Vending Machines (small computing power)

Costas Busch - RPI11 input memory output memory Stack Pushdown Automaton Pushdown Automaton Example: Compilers for Programming Languages (medium computing power) Push, Pop

Costas Busch - RPI12 input memory output memory Random Access Memory Turing Machine Turing Machine Examples: Any Algorithm (highest computing power)

Costas Busch - RPI13 Finite Automata Pushdown Automata Turing Machine Power of Automata Less powerMore power Solve more computational problems