Design and Implementation of VLSI Systems (EN0160)

Slides:



Advertisements
Similar presentations
Design and Implementation of VLSI Systems (EN1600)
Advertisements

Logic Gate Delay Modeling -1 Bishnu Prasad Das Research Scholar CEDT, IISc, Bangalore
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) lecture10 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 24: Sequential Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
Logical Effort A Method to Optimize Circuit Topology Swarthmore College E77 VLSI Design Adem Kader David Luong Mark Piper December 6, 2005.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN1600) Lecture 21: Dynamic Combinational Circuit Design Prof. Sherief Reda Division of.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN01600) Lecture 19: Combinational Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600S08) Lecture12: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 27: Datapath Subsystems 1/3 Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley]
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 14: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 2/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 29: Datapath Subsystems 3/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 11: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 15: Interconnects & Wire Engineering Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources:
Introduction to CMOS VLSI Design Lecture 5: Logical Effort David Harris Harvey Mudd College Spring 2004.
Logical Effort.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 14: Interconnects Prof. Sherief Reda Division of Engineering, Brown University.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE VLSI Circuit Design Lecture 13 - More about.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 22: Sequential Circuit Design (1/2) Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 20: Combinational Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN1600) Lecture 23: Sequential Circuit Design (2/2) Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 25: Datapath Subsystems 1/4 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 31: Array Subsystems (SRAM) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN1600) Lecture 26: Datapath Subsystems 2/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 22: Material Review Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 25: Sequential Circuit Design (3/3) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) lecture03 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture10: Delay Estimation Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 21: Differential Circuits and Sense Amplifiers Prof. Sherief Reda Division.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
1 MICROELETTRONICA Logical Effort and delay Lection 4.
S. Reda VLSI Design Design and Implementation of VLSI Systems (EN1600) lecture09 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
Introduction to CMOS VLSI Design Lecture 5: Logical Effort
Lecture 4 – Logical Effort
EE141 © Digital Integrated Circuits 2nd Combinational Circuits 1 Logical Effort - sizing for speed.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 13: Logical Effort (2/2) Prof. Sherief Reda Division of Engineering, Brown.
EE 447 VLSI Design Lecture 5: Logical Effort. EE 447 VLSI Design 5: Logical Effort2 Outline Introduction Delay in a Logic Gate Multistage Logic Networks.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 23: Sequential Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
CMOS VLSI For Computer Engineering Lecture 4 – Logical Effort Prof. Luke Theogarajan parts adapted form Harris – and Rabaey-
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 5.1 EE4800 CMOS Digital IC Design & Analysis Lecture 5 Logic Effort Zhuo Feng.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 17: Static Combinational Circuit Design (1/2) Prof. Sherief Reda Division.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 4/4 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 18: Static Combinational Circuit Design (2/2) Prof. Sherief Reda Division.
Design and Implementation of VLSI Systems (EN1600) lecture05 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
Elmore Delay, Logical Effort
Logical Effort: optimal CMOS device sizing Albert Chun (M.A.Sc. Candidate) Ottawa-Carleton Institute for Electrical & Computer Engineering (OCIECE) Ottawa,
Introduction  Chip designers face a bewildering array of choices –What is the best circuit topology for a function? –How many stages of logic give least.
Optimal digital circuit design Mohammad Sharifkhani.
Logical Effort and Transistor Sizing Digital designs are usually expected to operate at high frequencies, thus designers often have to choose the fastest.
Lecture 6: Logical Effort
Introduction to CMOS VLSI Design Lecture 5: Logical Effort GRECO-CIn-UFPE Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 6: Logical Effort
Linear Delay Model In general the propagation delay of a gate can be written as: d = f + p –p is the delay due to intrinsic capacitance. –f is the effort.
EEC 118 Lecture #7: Designing with Logical Effort Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation.
EE141 © Digital Integrated Circuits 2nd Combinational Circuits 1 A few notes for your design  Finger and multiplier in schematic design  Parametric analysis.
Modern VLSI Design 3e: Chapter 4 Copyright  1998, 2002 Prentice Hall PTR Topics n Transistor sizing: –Spice analysis. –Logical effort.
Introduction to CMOS VLSI Design Chapter 4 Delay
Lecture 6: Logical Effort
Logical Effort Basics from Bart Zeydel.
Lecture 6: Logical Effort
Introduction to CMOS VLSI Design Lecture 5: Logical Effort
Estimating Delays Would be nice to have a “back of the envelope” method for sizing gates for speed Logical Effort Book by Sutherland, Sproull, Harris Chapter.
RC Modeling and Logical Effort Basics
Lecture 6: Logical Effort
CS 258 Parallel Computer Architecture Lecture 5 Routing (Con’t)
COMBINATIONAL LOGIC - 2.
Presentation transcript:

Design and Implementation of VLSI Systems (EN0160) Lecture 12: Logical Effort (2/2) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley – Rabaey/Pearson] S. Reda EN160 SP’07

Summary of linear delay model g: logical effort = ratio between input capacitance of the “template” gate size and the input capacitance of 1× inverter h: electrical effort = ratio between load capacitance and the gate input capacitance (sometimes called fanout) p: parasitic delay represents delay of gate driving no load set by internal parasitic capacitance Unloaded delay =3RC  12 ps in 180 nm process 40 ps in 0.6 mm process S. Reda EN160 SP’07

Example: FO4 Inverter Estimate the delay of a fanout-of-4 (FO4) inverter Logical Effort: g = Electrical Effort: h = Parasitic Delay: p = Stage Delay: d = Absolute Delay: dabs = S. Reda EN160 SP’07

Example: FO4 Inverter Estimate the delay of a fanout-of-4 (FO4) inverter Logical Effort: g = 1 Electrical Effort: h = 4 Parasitic Delay: p = 1 Stage Delay: d = 5 Absolute Delay: dabs = 12*5=60ps The FO4 delay is about 200 ps in 0.6 mm process 60 ps in a 180 nm process f/3 ns in an f mm process S. Reda EN160 SP’07

Multistage logic networks Logical effort generalizes to multistage networks Path Logical Effort Path Electrical Effort Path Effort Can we write F=GH? S. Reda EN160 SP’07

Can we write F = GH? No! Consider paths that branch: G = 1 F = g1g2h1h2 = 36 = 2GH How to fix this problem? S. Reda EN160 SP’07

Branching effort Introduce branching effort Accounts for branching between stages in path Now we compute the path effort F = GBH Note: S. Reda EN160 SP’07

Logical Effort can help us answering two key questions How large should be each stage in a multi-stage network to achieve the minimium delay? What is the optimal number of stages to achieve the minimum delay S. Reda EN160 SP’07

1. What is the optimal size of each stage? Delay is minimized when each stage bears the same effort Gate 1 2 GND Answer can be generalized. Thus, for N stages, minimum delay is achieved when each stage bears the same effort S. Reda EN160 SP’07

Example: 3-stage path Select gate sizes x and y for least delay from A to B S. Reda EN160 SP’07

Example: 3-stage path Logical Effort G = Electrical Effort H = Branching Effort B = Path Effort F = Best Stage Effort Parasitic Delay P = Delay D = S. Reda EN160 SP’07

Example: 3-stage path Logical Effort G = (4/3)*(5/3)*(5/3) = 100/27 Electrical Effort H = 45/8 Branching Effort B = 3 * 2 = 6 Path Effort F = GBH = 125 Best Stage Effort Parasitic Delay P = 2 + 3 + 2 = 7 Delay D = 3*5 + 7 = 22 = 4.4 FO4 S. Reda EN160 SP’07

Example: 3-stage path Work backward for sizes y = 45 * (5/3) / 5 = 15 S. Reda EN160 SP’07

2. What is the optimal number of stages? Consider adding inverters to end of path How many give least delay? Define best stage effort S. Reda EN160 SP’07

Optimal number of stages has no closed-form solution Neglecting parasitics (pinv = 0), we find r = 2.718 (e) For pinv = 1, solve numerically for r = 3.59 A path achieves least delay by using stages S. Reda EN160 SP’07