-Artificial Neural Network- Chapter 5 Back Propagation Network

Slides:



Advertisements
Similar presentations
Artificial Neural Networks
Advertisements

Multi-Layer Perceptron (MLP)
A Brief Overview of Neural Networks By Rohit Dua, Samuel A. Mulder, Steve E. Watkins, and Donald C. Wunsch.
Slides from: Doug Gray, David Poole
NEURAL NETWORKS Backpropagation Algorithm
Ch. Eick: More on Machine Learning & Neural Networks Different Forms of Learning: –Learning agent receives feedback with respect to its actions (e.g. using.
Multilayer Perceptrons 1. Overview  Recap of neural network theory  The multi-layered perceptron  Back-propagation  Introduction to training  Uses.
-Artificial Neural Network- Chapter 2 Basic Model
Artificial Neural Networks
-Artificial Neural Network- Counter Propagation Network
Artificial Neural Networks
Perceptron.
Supervised learning 1.Early learning algorithms 2.First order gradient methods 3.Second order gradient methods.
November 19, 2009Introduction to Cognitive Science Lecture 20: Artificial Neural Networks I 1 Artificial Neural Network (ANN) Paradigms Overview: The Backpropagation.
-Artificial Neural Network- Chapter 3 Perceptron 朝陽科技大學 資訊管理系 李麗華 教授.
-Artificial Neural Network- Adaptive Resonance Theory(ART) 朝陽科技大學 資訊管理系 李麗華 教授.
Machine Learning Motivation for machine learning How to set up a problem How to design a learner Introduce one class of learners (ANN) –Perceptrons –Feed-forward.
-Artificial Neural Network- Chapter 4 朝陽科技大學 資訊管理系 李麗華 教授.
Before we start ADALINE
Data Mining with Neural Networks (HK: Chapter 7.5)
CHAPTER 11 Back-Propagation Ming-Feng Yeh.
-Artificial Neural Network- Matlab操作介紹 -以類神經網路BPN Model為例
CS 4700: Foundations of Artificial Intelligence
November 21, 2012Introduction to Artificial Intelligence Lecture 16: Neural Network Paradigms III 1 Learning in the BPN Gradients of two-dimensional functions:
-Artificial Neural Network- Chapter 3 Perceptron 朝陽科技大學 資訊管理系 李麗華教授.
Dr. Hala Moushir Ebied Faculty of Computers & Information Sciences
Multiple-Layer Networks and Backpropagation Algorithms
Artificial Neural Networks Shreekanth Mandayam Robi Polikar …… …... … net k   
-Artificial Neural Network- Chapter 9 Self Organization Map(SOM) 朝陽科技大學 資訊管理系 李麗華 教授.
Neural Networks AI – Week 23 Sub-symbolic AI Multi-Layer Neural Networks Lee McCluskey, room 3/10
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Chapter 3 Neural Network Xiu-jun GONG (Ph. D) School of Computer Science and Technology, Tianjin University
1 Chapter 6: Artificial Neural Networks Part 2 of 3 (Sections 6.4 – 6.6) Asst. Prof. Dr. Sukanya Pongsuparb Dr. Srisupa Palakvangsa Na Ayudhya Dr. Benjarath.
Appendix B: An Example of Back-propagation algorithm
Machine Learning Dr. Shazzad Hosain Department of EECS North South Universtiy
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition LECTURE 16: NEURAL NETWORKS Objectives: Feedforward.
Artificial Intelligence Techniques Multilayer Perceptrons.
1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 21 Oct 28, 2005 Nanjing University of Science & Technology.
Artificial Neural Networks. The Brain How do brains work? How do human brains differ from that of other animals? Can we base models of artificial intelligence.
Gap filling of eddy fluxes with artificial neural networks
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31: Feedforward N/W; sigmoid.
Multi-Layer Perceptron
Akram Bitar and Larry Manevitz Department of Computer Science
Back-Propagation Algorithm AN INTRODUCTION TO LEARNING INTERNAL REPRESENTATIONS BY ERROR PROPAGATION Presented by: Kunal Parmar UHID:
CS621 : Artificial Intelligence
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32: sigmoid neuron; Feedforward.
Chapter 2 Single Layer Feedforward Networks
Introduction to Neural Networks Introduction to Neural Networks Applied to OCR and Speech Recognition An actual neuron A crude model of a neuron Computational.
Neural Networks Teacher: Elena Marchiori R4.47 Assistant: Kees Jong S2.22
EEE502 Pattern Recognition
Hazırlayan NEURAL NETWORKS Backpropagation Network PROF. DR. YUSUF OYSAL.
Neural Network Terminology
Neural Network and Deep Learning 王强昌 MLA lab.
Previous Lecture Perceptron W  t+1  W  t  t  d(t) - sign (w(t)  x)] x Adaline W  t+1  W  t  t  d(t) - f(w(t)  x)] f’ x Gradient.
Chapter 6 Neural Network.
Artificial Neural Networks An Introduction. Outline Introduction Biological and artificial neurons Perceptrons (problems) Backpropagation network Training.
Pattern Recognition Lecture 20: Neural Networks 3 Dr. Richard Spillman Pacific Lutheran University.
Learning with Neural Networks Artificial Intelligence CMSC February 19, 2002.
CSE343/543 Machine Learning Mayank Vatsa Lecture slides are prepared using several teaching resources and no authorship is claimed for any slides.
Supervised Learning in ANNs
FUNDAMENTAL CONCEPT OF ARTIFICIAL NETWORKS
CS621: Artificial Intelligence
Prof. Carolina Ruiz Department of Computer Science
network of simple neuron-like computing elements
-Artificial Neural Network- Perceptron (感知器)
Artificial Neural Networks
Artificial Neural Networks
CS621: Artificial Intelligence Lecture 22-23: Sigmoid neuron, Backpropagation (Lecture 20 and 21 taken by Anup on Graphical Models) Pushpak Bhattacharyya.
Prof. Carolina Ruiz Department of Computer Science
Outline Announcement Neural networks Perceptrons - continued
Presentation transcript:

-Artificial Neural Network- Chapter 5 Back Propagation Network 朝陽科技大學 資訊管理系 李麗華 教授

Introduction (1) BPN = Back Propagation Network BPN is a layered feedforward supervised network. BPN provides an effective means of allowing a computer to examine data patterns that may be incomplete or noisy. Architecture: θ1 X1 X2 ‧ Y1 Y2 H1 H2 Hh θ2 Xn Yj θh 朝陽科技大學 李麗華 教授

Introduction (2) Input layer: [X1,X2,….Xn]. Hidden layer: can have more than one layer. derive: net1, net2, …neth; transfer output H1, H2,…,Hh, to be used as the input to derive the result for output layer Output layer: [Y1,…Yj]. Weights: Wij. Transfer function: Nonlinear  Sigmoid function (*) The nodes in the hidden layers organize themselves in a way that different nodes learn to recognize different features of the total input space. 朝陽科技大學 李麗華 教授

Processing Steps (1) Briefly describe the processing Steps as follows. Based on the problem domain, set up the network. Randomly generate weights Wij. Feed a training set, [X1,X2,….Xn], into BPN. Compute the weighted sum and apply the transfer function on each node in each layer. Feeding the transferred data to the next layer until the output layer is reached. The output pattern is compared to the desired output and an error is computed for each unit. 朝陽科技大學 李麗華 教授

Processing Steps (2) 5. Feedback the error back to each node in the hidden layer. Each unit in hidden layer receives only a portion of total errors and these errors then feedback to the input layer. Go to step 4 until the error is very small. Repeat from step 3 again for another training set. 朝陽科技大學 李麗華 教授

Computation Processes(1/10) The detailed computation processes of BPN. Set up the network according to the input nodes and the output nodes required. Randomly assigned the weights. Feed the training pattern (set) into the network and do the following computation. : Whj Xi Wih neth x1 Xn Hh Yj θ1 θh θj H1 net1 朝陽科技大學 李麗華 教授

Computation Processes(2/10) 4. Compute from the Input layer to hidden layer for each node. 5. Compute from the hidden layer to output layer for each node. 朝陽科技大學 李麗華 教授

Computation Processes(3/10) 6. Calculate the total error & find the difference for correction δj=Yj(1-Yj)( Tj -Yj) δh=Hh(1- Hh) ΣjWhj δj 7. ΔWhj=ηδj Hh ΔΘj = -ηδj ΔWih=ηδh Xi ΔΘh= -ηδh 8. update weights Whj=Whj+ΔWhj ,Wih=Wih+ΔWih , Θj= Θj + ΔΘj, Θh= Θh + ΔΘh 9. Repeat steps 4~8, until the error is very small. 10.Repeat steps 3~9, until all the training patterns are learned. 朝陽科技大學 李麗華 教授

EX: Use BPN to solve XOR (1) X1 X2 T -1 -1 -1 1 1 1 -1 1 1 Use BPN to solve the XOR problem Let W11=1, W21= -1, W12= -1, W22=1, W13=1, W23=1, Θ1=1, Θ2=1,Θ3=1, η=10 W23 W13 W22 W21 W12 W11 X1 X2 Y1 H1 H2 Θ1 Θ2 Θ3 朝陽科技大學 李麗華 教授

EX: BPN Solve XOR (2) ΔW12=ηδ1 X1 =(10)(-0.018)(-1)=0.18 ΔΘ1 =-ηδ1 = -(10)(-0.018)=0.18 以下為第一次修正後的權重值. X1 1.18 0.754 0.82 0.82 1.915 0.754 X2 1.18 朝陽科技大學 李麗華 教授

BPN Discussion Number of hidden nodes increase, the convergence will get slower. But the error can be minimized The general concept of designing the number of hidden node uses: # of hidden nodes=(Input nodes + Output nodes)/2, or # of hidden nodes=(Input nodes * Output nodes)1/2 Usually, 1~2 hidden layer is enough for learning a complex problem. Too many layers will cause the learning very slow. When the problem is hyper-dimension and very complex, then we add an extra layer. Learning rate, η, usually set as [0.5, 1.0], but it depends on how fast and how detail the network shall learn. 朝陽科技大學 李麗華 教授

The Gradient Steepest Descent Method(SDM) (1) Recall: We want the difference of computed output and expected output getting close to 0. Therefore, we want to obtain so that we can update weights to improve the network results. 朝陽科技大學 李麗華 教授

The Gradient Steepest Descent Method(SDM) (2) 朝陽科技大學 李麗華 教授

The Gradient Steepest Descent Method(SDM) (3) 朝陽科技大學 李麗華 教授

The Gradient Steepest Descent Method(SDM) (4) 朝陽科技大學 李麗華 教授

The Gradient Steepest Descent Method(SDM) (5) 朝陽科技大學 李麗華 教授

The Gradient Steepest Descent Method(SDM) (6) Learning computation 朝陽科技大學 李麗華 教授

The Gradient Steepest Descent Method(SDM) (7) 朝陽科技大學 李麗華 教授