Evaluation of cloudiness in LMDZ GCM using CALIPSO and PARASOL H. Chepfer, S. Bony, G. Cesana, JL Dufresne, D. Konsta, LMD/IPSL D. Winker, NASA/LaRC D.

Slides:



Advertisements
Similar presentations
The Cloud Feedback Model Intercomparison Project Plans for CFMIP-2
Advertisements

Page 1© Crown copyright 2007 Constraining the range of climate sensitivity through the diagnosis of cloud regimes Keith Williams 1 and George Tselioudis.
Proposed new uses for the Ceilometer Network
R. Forbes, 17 Nov 09 ECMWF Clouds and Radiation University of Reading ECMWF Cloud and Radiation Parametrization: Recent Activities Richard Forbes, Maike.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
1 Evaluating climate model using observations of tropical radiation and water budgets Richard P. Allan, Mark A. Ringer Met Office, Hadley Centre for Climate.
Robin Hogan (with input from Anthony Illingworth, Keith Shine, Tony Slingo and Richard Allan) Clouds and climate.
Impacts of Large-scale Controls and Internal Processes on Low Clouds
CanSISE East meeting, CIS, 10 February 2014 Seasonal forecast skill of Arctic sea ice area Michael Sigmond (CCCma) Sigmond, M., J. Fyfe, G. Flato, V. Kharin,
Scaling Laws, Scale Invariance, and Climate Prediction
1 An initial CALIPSO cloud climatology ISCCP Anniversary, July 2008, New York Dave Winker NASA LaRC.
TOA radiative flux diurnal cycle variability Patrick Taylor NASA Langley Research Center Climate Science Branch NEWS PI Meeting.
Evaluation of ECHAM5 General Circulation Model using ISCCP simulator Swati Gehlot & Johannes Quaas Max-Planck-Institut für Meteorologie Hamburg, Germany.
Wesley Berg, Tristan L’Ecuyer, and Sue van den Heever Department of Atmospheric Science Colorado State University Evaluating the impact of aerosols on.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California 1 GCSS Pacific Cross-section.
© Crown copyright Met Office COSP: status and CFMIP-2 experiments A. Bodas-Salcedo CFMIP/GCSS meeting, Vancouver, 8-12 June 2009.
What is the Saharan Air Layer? The Saharan Air Layer (SAL) is a layer of warm, dry, dusty air which normally overlays the cooler more humid surface air.
Cloud Biases in CMIP5 using MISR and ISCCP simulators B. Hillman*, R. Marchand*, A. Bodas-Salcedo, J. Cole, J.-C. Golaz, and J. E. Kay *University of Washington,
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
Direct aerosol radiative forcing based on combined A-Train observations – challenges in deriving all-sky estimates Jens Redemann, Y. Shinozuka, M.Kacenelenbogen,
Cyclone composites in the real world and ACCESS Pallavi Govekar, Christian Jakob, Michael Reeder and Jennifer Catto.
1 Une description statistique multi-variable des nuages au dessus de l’océan tropical à partir des observations de jour de l’A-train en haute résolution.
TEMPLATE DESIGN © Total Amount Altitude Optical Depth Longwave High Clouds Shortwave High Clouds Shortwave Low Clouds.
The case of polar lows Hans von Storch 13 and Matthias Zahn 2 1. Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Germany. 2. Environmental.
Evaluation of cloudiness simulated by climate models using CALIPSO and PARASOL H. Chepfer Laboratoire Météorologie Dynamique / Institut Pierre Simon Laplace,
MT Workshop October 2005 JUNE 2004 DECEMBER 2004 End of OCTOBER 2005 ? MAY 2002 ? Capabilities of multi-angle polarization cloud measurements from.
Key Questions to Answer on Storm Simulation Xiangdong Zhang International Arctic Research Center University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
© Crown copyright Met Office Evaluation of cloud regimes in climate models Keith Williams and Mark Webb (A quantitative performance assessment of cloud.
Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Erica K. Dolinar Xiquan Dong and Baike Xi.
Synoptic variability of cloud and TOA radiative flux diurnal cycles Patrick Taylor NASA Langley Research Center Climate Science Branch
Convective Feedback: Its Role in Climate Formation and Climate Change Igor N. Esau.
Clouds in the Southern midlatitude oceans Catherine Naud and Yonghua Chen (Columbia Univ) Anthony Del Genio (NASA-GISS)
MJO simulations under a dry environment Marcela Ulate M Advisor: Chidong Zhang (… in a Nudging World)
1 Mathieu Reverdy Hélène Chepfer Workshop EECLAT janvier 2013 Implementation of ATLID/Earthcare lidar simulator within CFMIP–Observation Simulator.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean cloud biases in ACCESS.
3rd Indo-French Workshop on Megha-Tropiques under ISRO-CNES Programme on Atmosphere, Climate and Oceanography, Ahmedabad, India October 17-20, Convection,
TESTING THE REALISM OF THE MMF (or any GCM) REPRESENTATION OF THE MJO William B. Rossow Eric Tromeur City College of New York CMMAP Meeting July.
C LOUD R ADIATIVE K ERNELS : C LOUDS IN W/m 2 with T. Andrews, J. Boyle, A. Dessler, P. Forster, P. Gleckler, J. Gregory, D. Hartmann, S. Klein, R. Pincus,
Andrew Heidinger and Michael Pavolonis
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
Large Eddy Simulation of Low Cloud Feedback to a 2-K SST Increase Anning Cheng 1, and Kuan-Man Xu 2 1. AS&M, Inc., 2. NASA Langley Research Center, Hampton,
Yuying Zhang, Jim Boyle, and Steve Klein Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory Jay Mace University.
Radiative Impacts of Cirrus on the Properties of Marine Stratocumulus M. Christensen 1,2, G. Carrió 1, G. Stephens 2, W. Cotton 1 Department of Atmospheric.
Trends in Tropical Water Vapor ( ): Satellite and GCM Comparison Satellite Observed ---- Model Simulated __ Held and Soden 2006: Robust Responses.
Trends in Tropical Water Vapor ( ): Satellite and GCM Comparison Satellite Observed ---- Model Simulated __ Held and Soden 2006: Robust Responses.
Investigations of Artifacts in the ISCCP Datasets William B. Rossow July 2006.
Thomas Ackerman Roger Marchand University of Washington.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California 1 João Teixeira Jet Propulsion.
HAPPY 25 TH !!!! Cloud Feedback George Tselioudis NASA/GISS.
ISCCP SO FAR (at 30) GOALS ►Facilitate "climate" research ►Determine cloud effects on radiation exchanges ►Determine cloud role in global water cycle ▬
Evaluation of radiative properties of low and high clouds in different regimes using satellite measurements Bing Lin 1, Pat Minnis 1, and Tai-Fang Fan.
April 2007EGU Assessment of Global Cloud Climatologies Claudia Stubenrauch + GEWEX cloud assessment group (S. Ackerman, R. Eastman, A. Evans, A.
2004/11/10GIST 22, Brussels, LMD, M. Viollier1 POLDER, CERES, GERB flux comparisons and information on AMMA and MeghaTropiques Michel Viollier Laboratoire.
Eric Tromeur and William B. Rossow NOAA/CREST at the City College of New York Interaction of Tropical Deep Convection with the Large-Scale Circulation.
Clouds assessments GEWEX Stubenrauch CREW Roebling.
Barbuda Antigua MISR 250 m The Climatology of Small Tropical Oceanic Cumuli New Findings to Old Problems (Analysis of EOS-Terra data) Larry Di Girolamo,
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean Clouds Characterization.
Cloudnet meeting Oct Martial Haeffelin SIRTA Cloud and Radiation Observatory M. Haeffelin, A. Armstrong, L. Barthès, O. Bock, C. Boitel, D.
Cloud fraction in midlatitude cyclones: observations vs models Catherine Naud, Columbia University Collaborators: James Booth (Columbia), Tony Del Genio.
Consistent Earth System Data Records for Climate Research: Focus on Shortwave and Longwave Radiative Fluxes Rachel T. Pinker, Yingtao Ma and Eric Nussbaumer.
Important data of cloud properties for assessing the response of GCM clouds in climate change simulations Yoko Tsushima JAMSTEC/Frontier Research Center.
Cloud, radiation, and precipitation changes with dynamic regime: An observational analysis and model evaluation study PI: George Tselioudis Co-PI: Chris.
Aerosol properties in a cloudy world (from MODIS and CALIOP) Alexander Marshak (GSFC) Bob Cahalan (GSFC), Tamas Varnai (UMBC), Guoyong Wen, Weidong Yang.
Dave Winker1 and Helene Chepfer2
Relationships inferred from AIRS-CALIPSO synergy
Using A-train observations to evaluate clouds in CAM
Cloud Validation: The issues
CURRENT Energy Budget Changes
Presentation transcript:

Evaluation of cloudiness in LMDZ GCM using CALIPSO and PARASOL H. Chepfer, S. Bony, G. Cesana, JL Dufresne, D. Konsta, LMD/IPSL D. Winker, NASA/LaRC D. Tanré, LOA.

Clouds and climate feedbacks Dufresne and Bony, 2008

Evaluation of clouds in climate models - mostly based on Monthly mean TOA fluxes ERBE, ScaRaB, CERES, and ISCCP (eg. Zhang et al. 2005, Webb et al. 2001, Bony et al. 2004, ….) - but a good reproduction of monthly mean TOA fluxes can be due to error’s compensations (c) Error’s compensation in vertical distribution : Same TOA fluxes All errors (a) (b), (c) will impact the cloud feedback predicted by climate models (a)Error’s compensation between : the Cloud Optical thickness and the Total Cloud Cover - vertically integrated values within a lat x lon grid box - (b) Error’s compensation in time averaging : Instantaneaous.vs. Monthly mean

Use A-Train observations to track errors in climate models on : (1) the Cloud Cover (2) the Cloud Optical Thickness (3) the relationship between the Cloud Cover and the Cloud Optical Thickness (4) the Cloud Vertical distribution (5) the « Cloud Type » Objectives : Climate Simulations with two different models: - LMDz 4 - LMDz «New Physic » COSP Simulator : - COSP/CALIPSO - COSP/PARASOL A-train Observational datasets consistent with simulator outputs: CALIPSO-GOCCP PARASOL-1dir

(1) Total Cloud Cover - observations « GCM Oriented Calipso Cloud Product » (CALIPSO – GOCCP): an observationnal dataset fully consistent with COSP outputs CALIPSO – GOCCP compared with others cloud climatologies Chepfer et al., 2009, JGR

(2) Cloud Optical Thickness : Reflectance -observations PARASOL Reflectance Obs. (JFM) 1 PARASOL image The Parasol Reflectance in a specific direction is mainly dependent on the cloud optical thickness

(3) Reflectance and Cloud Cover LMDZ New Physic + PARASOL Simulator LMDZ 4 + PARASOL Simulator PARASOL Obs. LMDZ 4 + CALIPSO Simulator LMDZ « New Physic » + CALIPSO Simulator CALIPSO – GOCCP Obs. Reflectance JFM Cloud Cover JFM

(3) Reflectance.vs. Cloud Cover Valeurs Instantanées 0.8 Cloud cover Reflectance Monthly mean values Instantaneous values Observations LMDZ4 + Simulators LMDZ4 + Simulators LMDZ new physic + Simulators LMDZ new physic + Simulators

(4) Cloud Vertical Distribution CLOUD FRACTION – Seasonal mean LO W MI D HIG H Chepfer et al. 2008, GRL LMDZ4 + Simulator CALIPSO-GOCCP LMDZ New Physic + Simulator

JFM LMDZ4 + Simulator CALIPSO-GOCCP (4) Low, Mid, High Cloud Covers LMDZ New Physic + Simulator HIGH MID LOW

In the Tropics : Reflectance and Total Cloud cover REFLECTANCE w500 (hPa/day) LMDz4 ___ LMDz New Physic w500 (hPa/day) CLOUD COVER

In the Tropics : Cloud Vertical Distribution w500 (hPa/day) CLOUD FRACTION – Seasonal mean LMDZ4 + Simulator CALIPSO-GOCCP LMDZ New Physic + Simulator w500 (hPa/day) log

In the Tropics : Cloud types Tropical warm pool Hawai trade cumulus LMDZ4 + Simulator CALIPSO-GOCCP LMDZ New Physic + Simulator Pressure Lidar signal intensity (SR ) Clouds

Conclusion CALIPSO and PARASOL provide powerful observations to identify error’s compensation: (1) between vertically integrated Cloud Cover and Optical Thickness, (2) in the time averaging : instantaneous.vs. monthly mean (3) in the cloud vertical distribution Both versions of the model, LMDz4 and « LMDz new physic » exhibit error’s compensations « LMDz new physic » is more consistent with observations than LMDZ4 for : - total cloud cover - low level oceanic tropical clouds (cloud cover and reflectance) - instantaneous relationship between cloud cover and cloud fraction * « LMDz new physic » main defaults : - overestimation of the high cloud amount - underestimate of the total cloud amount and the tropical low level oceanic cloud amont in subsidence regions None of the two versions of the model is able to reproduce the different « Cloud Types » characterized by the « histograms of lidar intensity », e.g. the 2 modes of low level clouds and the congestus clouds

CALIPSO and PARASOL simulators are included in COSP: Chepfer H., S. Bony, D. Winker, M. Chiriaco, J-L. Dufresne, G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model, Geophys. Res. Let., 35, L15704, doi: /2008GL CALIPSO- GOCCP « GCM oriented CALIPSO Cloud Product » and PARASOL Reflectances Observations : Chepfer H., S. Bony, D. Winker, G. Cesana, JL. Dufresne, P. Minnis, C. J. Stubenrauch, S. Zeng, 2009: The GCM Oriented Calipso Cloud Product (CALIPSO-GOCCP), J. Geophys. Res., under revision.

Fin

In the Tropics : Reflectance and Cloud fraction remplacer par tot CC ? REFLECTANCE w500 (hPa/day) CLOUD FRACTION Low Mid High _._. Obs LMDz4 ___ LMDz new physic ___ Obs LMDz4 _._. LMDz new physic w500 (hPa/day)

Conclusion An tool to compare cloudiness in GCM and CALIOP data : Lidar simulator is now part of COSP (CFMIP Observation Simulator Package: An GCM oriented CALIPSO cloud Product GOCCP : An observational dataset fully consistent with the « GCM + Simulator output » Tests done but not shown here, to check robustness of the results: Sensitivity to multiple scattering factor (in simulator) Add color ratio threshold to avoid misinterpretation cloud/aerosols (CALIOP/GOCCP) Sensitivity to the frequency simulator called (3hrs, 6hrs, …) (GCM) Sensitivity to the diurnal cycle (GCM) LMDz cloudiness: –High clouds … not to bad : slightly underestimated –Mid clouds in mid latitudes : seem to be shifted to low level clouds –Low clouds : underestimated in the tropics –Tropical low clouds : inhomogeneous fractionnated clouds and subsidence regions clouds are strongly underestimated in the model … those are likely playing a key role in the uncertainty on cloud climate feedback predicted by different GCM

Evaluation of the Cloud vertical distribution GCM + Lidar SIMULATOR (COSP) CALIPSO-GOCCP Histograms of Scattering Ratio (Lidar signal intensity) LOW MID HIGH PRESSURE Nb of occurrence (log scale) Lidar signal intensity (SR) Along the GPCI – Gewex Pacific Cross section Intercomparison Transect Lidar signal intensity (SR) SR>3 : cloud

Evaluation of the Cloud vertical distribution GCM + Lidar SIMULATOR (COSP)CALIPSO-GOCCP Californian Strato Cumulus JJA PRESSURE SR VALUE Mid-latitudes North Pacific JJA PRESSURE Lidar signal intensity

Evaluer les nuages dans les modèles de climat (2) La bonne reproduction des flux au sommet de l’atmosphère résulte d’une compensation d’erreurs entre couverture nuageuse et épaisseur optique Les flux moyens mensuels au sommet de l’atmosphère sont bien reproduits par les modèles de climat (ie. Zhang et al – intercomparaison modèles de climat) Epaisseur optique Distribution verticale des nuages (Slingo et al. 1988) Flux égaux Motivation: Compensations d’erreurs Thèse D. Konsta (en cours) Relation Réflectance (Parasol) - Couverture nuageuse (Calipso) au dessus des océans : Valeurs Moyennes Mensuelles Valeurs Instantanées Réflectance (Epaisseur Optique) Couverture nuageuse Observations GCM + Simulateurs GCM + Simulateurs

Tropical regions (dynamical regimes) JFM CALIOPGCM + SIMULATOR W500 (hPa/day)

Observations : Cloud detection criteria (1 orbite) ATB (583 levels) ATB (19 levels) SR (19 levels) CLOUDS UNCLASSIFIED CLEAR FULLY ATTENUATED 80 S80 N0 Altitude 35 0 GOCCP

Low clouds Low Clouds P>680 hPa (night time - October) CALIOP 330M SR3CALIOP 330M SR5 CALIOP L2 V01 GLAS L2 ISCCP L2

Observations : Cloud detection criteria > 3 : CLOUDY SR

(2) The Cloud Vertical Distribution types GCM + Lidar SIMULATOR (COSP) CALIPSO-GOCCP Histograms of Scattering Ratio (Lidar signal intensity) LOW MID HIGH PRESSURE Nb of occurrence (log scale) Lidar signal intensity (SR) Along the GPCI – Gewex Pacific Cross section Intercomparison Transect Lidar signal intensity (SR) SR>3 : cloud