© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.

Slides:



Advertisements
Similar presentations
14-MAC Sub-layer Dr. John P. Abraham Professor UTPA.
Advertisements

Ethernet – CSMA/CD Review
12.1 Chapter 12 Multiple Access Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Multiple access What if multiple machines are sharing the same link?
Lecture 9: Multiple Access Protocols
Multiple Access Methods. When nodes or stations are connected and use a common link (cable or air), called a multipoint or broadcast link, we need a.
LECTURE 11 CT1303 LAN. DYNAMIC MAC PROTOCOL No fixed assignment for transmission media or any network resources.. It allows transmission when needed.
12.1 Chapter 12 Multiple Access Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
1 K. Salah Module 4.2: Media Access Control The Media Access Control (MAC) sublayer –Random Access (CSMA), IEEE –Token Passing, IEEE Ch 13-
Chapter 12 Multiple Access Figure 12.1 Data link layer divided into two functionality-oriented sublayers Figure 12.2 Taxonomy of multiple-access protocols.
1 Pertemuan 13 Teknik Akses Jaringan - Random Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0.
Copyright © 2003, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Chapter 6 Multiple Radio Access.
Computer Network 實踐資管 Wang-Jiunn Cheng 2004 PART IV-1 Local Area Networks (LANs) Topology.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 13 Multiple Access.
EE 4272Spring, 2003 Chapter 14 LAN Systems Ethernet (CSMA/CD)  ALOHA  Slotted ALOHA  CSMA  CSMA/CD Token Ring /FDDI Fiber Channel  Fiber Channel Protocol.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 16 Introduction to Computer Networks.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
12.1 Chapter 12 Multiple Access Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Semester EEE449 Computer Networks The Data Link Layer Part 2: Media Access Control En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex,
Medium Access Control Sublayer
9/11/2015 5:55 AM1 Ethernet and CSMA/CD CSE 6590 Fall 2010.
1 LAN Technologies and Network Topology. 2 Direct Point-to-Point Communication.
Chi-Cheng Lin, Winona State University CS412 Introduction to Computer Networking & Telecommunication Medium Access Control Sublayer.
LECTURE9 NET301. DYNAMIC MAC PROTOCOL: CONTENTION PROTOCOL Carrier Sense Multiple Access (CSMA): A protocol in which a node verifies the absence of other.
LAN technologies and network topology LANs and shared media Locality of reference Star, bus and ring topologies Medium access control protocols.
Lesson 3—Networking BASICS1 Networking BASICS Network Design Unit 2 Lesson 3.
Data and Computer Communications Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Medium Access Control Sublayer.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. © The McGraw-Hill Companies, Inc. Medium Access Control Asst. Prof. Chaiporn.
Medium Access Control Sub Layer
12.1 Chapter 12 Multiple Access Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Data Communications, Kwangwoon University12-1 Chapter 12. Multiple Access 1.Random Access 2.Controlled Access 3.Channelization.
1 Kyung Hee University Chapter 12 Multiple Access.
LOCAL AREA NETWORKS. CSMA/CA In a wired network, the received signal has almost the same energy as the sent signal because either the length of the cable.
5: DataLink Layer 5a-1 Multiple Access protocol. 5: DataLink Layer 5a-2 Multiple Access Links and Protocols Three types of “links”: r point-to-point (single.
Ch 12. Multiple Access. Multiple Access for Shared Link Dedicated link – Point-to-point connection is sufficient Shared link – Link is not dedicated –
LECTURE9 NET301 11/5/2015Lect 9 NET DYNAMIC MAC PROTOCOL: CONTENTION PROTOCOL Carrier Sense Multiple Access (CSMA): A protocol in which a node verifies.
1 Ethernet CSE 3213 Fall February Introduction Rapid changes in technology designs Broader use of LANs New schemes for high-speed LANs High-speed.
THE MEDIUM ACCESS CONTROL SUBLAYER 4.1 THE CHANNEL ALLOCATION PROBLEM 4.2 MULTIPLE ACCESS PROTOCOLS.
COMPUTER NETWORKS Lecture-8 Husnain Sherazi. Review Lecture 7  Shared Communication Channel  Locality of Reference Principle  LAN Topologies – Star.
Chapter 12 Media Access Control (MAC)
COMPUTER NETWORKS Data-link Layer (The Medium Access Control Sublayer) MAC Sublayer.
Multiple Access By, B. R. Chandavarkar, CSE Dept., NITK, Surathkal Ref: B. A. Forouzan, 5 th Edition.
A Taxonomy of Mechanisms for Multi-Access
Multiple Access Methods
Part III Datalink Layer 10.
High Speed LANs – Ethernet and Token Ring
Multiple Access Mahesh Jangid Assistant Professor JVW University.
Channel Allocation (MAC)
Net301 lecture9 11/5/2015 Lect 9 NET301.
Services of DLL Framing Link access Reliable delivery
Department of Engineering Science ES465/CES 440, Intro
Figure 12.1 Data link layer divided into two functionality-oriented sublayers Networks can be divided into two categories: those using point-to-point.
THE IEEE MAC SUB-LAYER – chapter 14
Multiple Access Methods
Learning Objectives After interacting with this Learning Object, the learner will be able to: Explain the process of collision detection in CSMA/CD.
The Medium Access Control Sublayer
Channel Allocation Problem/Multiple Access Protocols Group 3
Ethernet – CSMA/CD Review
Channel Allocation Problem/Multiple Access Protocols Group 3
Data Communication Networks
Multiple Access Methods
Chapter 6 Multiple Radio Access.
Dr. John P. Abraham Professor UTPA
Multiple Access Control (MAC) Protocols
Part III Datalink Layer 10.
Chapter 12 Media Access Control (MAC)
Presentation transcript:

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints By Lami Kaya,

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.2 Chapter 14 The IEEE MAC Sub-Layer

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.3 Topics Covered 14.1 Introduction 14.2 A Taxonomy of Mechanisms for Multi-Access 14.3 Static and Dynamic Channel Allocation 14.4 Channelization Protocols 14.5 Controlled Access Protocols 14.6 Random Access Protocols

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Introduction This chapter –continues the discussion by examining the IEEE's MAC sublayer –explains multi-access protocols –considers both static and dynamic channel allocation Later chapters in this part –discuss specific networking technologies that use the access mechanisms explained here

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved A Taxonomy of Mechanisms for Multi-Access How do multiple, independent computers coordinate access to a shared medium? There are three broad approaches: –they can use a modified form of a multiplexing technique –they can engage in a distributed algorithm for controlled access –or they can use a random access strategy Figure 14.1 illustrates the taxonomy –including specific forms of each approach

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.6 Fig A Taxonomy of Mechanisms for Multi-Access

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Static and Dynamic Channel Allocation Channelization refers to a mapping between a given communication and a channel in the underlying system –There should be a mapping between entities and a channel is referred to as 1-to-1 and static –Static channel allocation works well for situations where the set of communicating entities is known in advance and does not change In many networks, however, the set of entities using the network varies over time As an example, consider cellular telephones in a city –users move, and they can turn a cell phone on and off at any time –thus, the set of cell phones that are operating in the range of a given cell tower varies constantly –A dynamic channel allocation scheme is needed; a mapping can be established when a new station appears, and the mapping can be removed when the station disappears

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Channelization Protocols Channelization protocols extend the multiplexing techniques covered in Chapter 11 Figure 14.2 (below) lists the main channelization techniques These schemes have been discussed in Chapter 11 in detail – FDMA – TDMA – CDMA

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Controlled Access Protocols Controlled access protocols provide a distributed version of statistical multiplexing –Figure 14.3 (below) lists the three principal forms: These will be discussed in the following sub-sections – Polling – Reservation – Token Passing

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Controlled Access Protocols Polling Polling uses a centralized controller –which cycles through stations on the network and gives each an opportunity to transmit a packet Algorithm 14.1 gives the steps a controller follows The selection step is significant because it means a controller can choose which station to poll at a given time There are two general polling policies: – Round robin order Round-robin means each station has an equal opportunity to transmit packets – Priority order Priority order means some stations will have more opportunity to send For example, priority order might be used to assign an IP telephone higher priority than a personal computer

14.5 Controlled Access Protocols Polling © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.11

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Controlled Access Protocols Reservation It is often used with satellite transmission It employs a two-step process in which each round of packet transmissions is planned in advance Typically, reservation systems have a central controller that follows Algorithm 14.2

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Controlled Access Protocols Reservation In the first step –each potential sender specifies whether they have a packet to send during the next round, and the controller transmits a list of the stations that will be transmitting In the second step –stations use the list to know when they should transmit Variations exist –where a controller uses an alternate channel to gather reservations for the next round while the current round of transmissions proceeds over the main channel

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Controlled Access Protocols Token Passing It is most often associated with ring topologies Although older LANs used token passing ring technology –popularity has decreased, and few token passing networks remain Imagine a set of computers connected in a ring –and imagine that at any instant, exactly one of the computers has received a special control message called a token When no station has any packets to send –the token circulates among all stations continuously For a ring topology, the order of circulation is defined –if messages are sent clockwise, the next station mentioned in the algorithm refers to the next physical station in a clockwise order When token passing is applied to other topologies (bus) –each station is assigned a position in a logical sequence –and the token is passed according to the assigned sequence

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Controlled Access Protocols Token Passing To control access, each computer follows Algorithm 14.3

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols Some LANs do not employ a controlled access mechanism –Instead, a set of computers attached to a shared medium attempt to access the medium without coordination The term random is used because access only occurs when a given station has a packet to send –and randomization is employed to prevent all computers on a LAN from attempting to use the medium at the same time –the descriptions of specific methods below will clarify the use of randomization Figure 14.4 lists the three random access methods that are discussed – ALOHA – CSMA/CD – CSMA/CA

14.6 Random Access Protocols © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.17

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols ALOHA An early network in Hawaii, known as ALOHAnet, pioneered the concept of random access –the network is no longer used, but the ideas have been extended The network consisted of a single powerful transmitter in a central geographic location –It is surrounded by a set of stations/computer –Stations had a transmitter capable of reaching the central transmitter but not powerful enough to reach all the other stations ALOHAnet used two (2) carrier frequencies for broadcasting: –one for outbound by the central transmitter to all stations –and another for inbound by stations to the central transmitter Figure 14.5 illustration of outbound and inbound frequencies in ALOHAnet

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols ALOHA

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols ALOHA The ALOHA protocol is straightforward: –when a station has a packet to send it transmits the packet on the inbound frequency –the central transmitter repeats the transmission on the outbound frequency (which all stations can receive) To insure that transmission is successful –a sending station listens to the outbound channel if a copy of its packet arrives, the sending station moves to the next packet if no copy arrives, the sending station waits a short time and tries again Why might a packet fail to arrive? Interference –if two stations simultaneously transmit the signals will interfere and the two transmissions will be garbled called a collision, and say that the two transmitted packets collide The protocol handles a collision –by requiring a sender to retransmit each lost packet

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols CSMA/CD Researchers at Xerox PARC created a random access protocol (1973) –In 1978, a standard (also called the DIX standard) was created by Digital Equipment Corporation, Intel, and Xerox –It is widely known as Ethernet It uses cable as a shared medium –instead of broadcasting radio frequency transmissions through the atmosphere Ethernet uses three (3) mechanisms to handle collisions: –Carrier sense –Collision detection –Binary exponential backoff

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols CSMA/CD Ethernet requires each station to monitor the cable to detect whether another transmission is already in progress –this process is known as carrier sense –it prevents the most obvious collision problems –and substantially improves network utilization A collision can occur if two stations wait for a transmission to stop, find the cable idle, and both start transmitting –A small part of the problem is that even at the speed of light, some time is required for a signal to travel down the cable –Thus, a station at one end of the cable cannot know instantly when a station at the other end begins to transmit

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols CSMA/CD To handle collisions –each station monitors the cable during transmission If the signal on the cable differs from the signal that the station is sending –it means that a collision has occurred –the technique is known as collision detection –when a collision is detected, the sending station aborts transmission Many details complicate Ethernet transmission –For example, following a collision, transmission does not abort until enough bits have been sent to guarantee that the collided signals reach all stations –Furthermore, following a transmission, stations must wait for an interpacket gap (9.6 sec for a 10 Mbps Ethernet) to insure that all stations sense an idle network and have a chance to transmit

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols CSMA/CD Binary Exponential Backoff –After a collision occurs a computer must wait for the cable to become idle again before transmitting a frame –Randomization is used to avoid having multiple stations transmit simultaneously as soon as the cable is idle –The standard specifies a maximum delay, d, and requires each station to choose a random delay less than d after a collision occurs When two stations each choose a random value –the station that chooses the smallest delay will proceed to send a packet and the network will return to normal operation In the case where two or more computers happen to choose nearly the same amount of delay –they will both begin to transmit at nearly the same time –producing a second collision

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols CSMA/CD To avoid a sequence of collisions –Ethernet requires each computer to double the range from which a delay is chosen after each collision a computer chooses a random delay between 0 - d after one collision a random delay between 0 - 2d after a second collision a random delay between 0 - 4d after a third, and so on –After a few collisions, the range from which a random value is chosen becomes large Thus, some computer will choose a random delay shorter than the others, and will transmit without a collision Doubling the range of the random delay after each collision is known as binary exponential backoff

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols CSMA/CD By using exponential backoff –an Ethernet can recover quickly after a collision –because each computer agrees to wait longer times between attempts when the cable becomes busy Even in the unlikely event that two or more computers choose delays that are approximately equal –exponential backoff guarantees that contention for the cable will be reduced after a few collisions The combination of techniques described above is known by the name Carrier Sense Multi-Access with Collision Detection (CSMA/CD) Algorithm 14.4 summarizes CSMA/CD

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Random Access Protocols CSMA/CD

14.6 Random Access Protocols CSMA/CA © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.28 CSMA/CD does not work as well in wireless LANs –because a transmitter used in a wireless LAN has a limited range A receiver that is more δ than away from the transmitter –will not receive a signal, and will not be able to detect a carrier Consider three computers with wireless LAN hardware positioned as Figure 14.6 (below) illustrates

14.6 Random Access Protocols CSMA/CA © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.29 In Figure 14.6, computer1 can communicate with computer2, but cannot receive the signal from computer3 –Thus, if computer3 is transmitting a packet to computer2, computer1's carrier sense mechanism will not detect the transmission –Similarly, if computer1 and computer3 simultaneously transmit, only computer2 will detect a collision The problem is sometimes called the hidden station problem –because some stations are not visible to others Wireless LANs use a modified access protocol –known as CSMA with Collision Avoidance (CSMA/CA) The CSMA/CA triggers a brief transmission from the intended receiver before transmitting a packet Visit

14.6 Random Access Protocols CSMA/CA © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.30 The idea is that if both the sender and receiver transmit a message –all computers within range of either will know a packet transmission is beginning Figure 14.7 (below) illustrates the sequence

14.6 Random Access Protocols CSMA/CA © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.31 In Figure 14.7 –computer3 sends a short message to announce that it is ready to transmit a packet to computer2 –and computer2 responds by sending a short message announcing that it is ready to receive the packet –all computers in range of computer3 receive the initial announcement –and all computers in the range of computer2 receive the response –as a result, even though it cannot receive the signal or sense a carrier, computer1 knows that a packet transmission is taking place

14.6 Random Access Protocols CSMA/CA © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.32 Collisions of control messages can occur when using CSMA/CA, but they can be handled easily For example, if computer1 and computer3 each attempt to transmit a packet to computer2 at exactly the same time –their control messages will collide –When a collision occurs, the sending stations apply random backoff before resending the control messages. Because control messages are much shorter than a packet, the probability of a second collision is low