What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
GAMMA-RAYS FROM COLLIDING WINDS OF MASSIVE STARS Anita Reimer, Stanford University Olaf Reimer, Stanford University Martin Pohl, Iowa State University.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
What can we really learn from positron flux 'Anomalies'? Boaz Katz, Kfir Blum, Eli Waxman arXiv:
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Hard X-Rays & Gamma-Rays Induced by Ultra High Energy Proton Acceleration in Cluster Accretion Shocks Susumu Inoue Felix Aharonian Naoshi Sugiyama (NAO.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv:
The TeV view of the Galactic Centre R. Terrier APC.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
First It’s Hot & Then It’s Not Extremely Fast Acceleration of Cosmic Rays In A Supernova Remnant Peter Mendygral Journal Club November 1, 2007.
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Origin of high-energy cosmic rays Vladimir Ptuskin IZMIRAN.
Dr. Karsten Berger Instituto de Astrofisica de Canarias, La Laguna, Spain.
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
Diffuse Emission and Unidentified Sources
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Propagation and Composition of Ultra High Energy Cosmic Rays
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Cosmic-Ray Electron Excess from Pulsars is Spiky or Smooth?: Continuous and Multiple Electron/Positron Injections Cosmic-Ray Electron Excess from Pulsars.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.
Diffusive shock acceleration: an introduction
Topics on Dark Matter Annihilation
Can dark matter annihilation account for the cosmic e+- excesses?
Neutrinos as probes of ultra-high energy astrophysical phenomena
Particle Acceleration in the Universe
Cosmic rays, γ and ν in star-forming galaxies
Predictions of Ultra - High Energy Neutrino fluxes
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL

The cosmic-ray spectrum & Composition Cosmic-ray E [GeV] log [dJ/dE] E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic (?) [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter

Intra-cluster CRs Observed in radio, HXR Will not be discussed here See D. Kushnir ’ s talk: [arXiv: , , ] * Likely origin- Accretion shocks * Predictions for Fermi, TeV (HESS, MAGIC)

Galactic CR sources: Constraints Max  >~10 15 eV Energy production rate L G,CR ~(A disk h CR )U CR /t CR * U CR ~1 eV/cm 3, * Propagation: 2 nd -ary (& primary) composition  L G,CR ~cA disk U CR (  disk /  sec )~ erg/100yr [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94]

Galactic CR sources: SNe? Motivation for SNe as sources: * L G,CR ~ L G,SN * Max  ~10 15 eV * e - acceleration to eV from X emission TeV photons from SNRs (RXJ ,RXJ ) * Claim: must be due to pp pion production  Confirms CR ion production [e.g. Koyama et al. 95] [e.g. Aharonian et al ]

TeV must be due to e - IC pp   origin in contradiction with radio, thermal-X (non detection of thermal X  n<~0.1/cm 3 ): TeV consistent with e - IC, including “ cutoffs ” : Claims RE e - IC inconsistency: Detailed spectral shape near h c, where theoretical predictions are highly uncertain [Katz & Waxman 07]

SNR TeV lessons Search at high n SNRs: Strong Thermal X, weak non-Thermal Difficult to prove pp based on EM obs. Highly simplified, phenomenological models (and plenty of room for complications: inhomogeneous plasma, particle spectra … ) [Katz & Waxman 07]

PAMELA: New e+ sources? Apply  anti-p, e + consistent with 2 nd ary origin Radiative e + losses- depend on propagation in Galaxy (poorly understood) * At 20GeV: f rad ~0.3~f 10 Be * Above 20GeV: If PAMELA correct  slightly rising f rad (  ) [Katz, Blum & Waxman 09]

What do we know about >10 19 eV CRs? Max  : L B >10 12 (  2 /  ) (  /Z eV) 2 L sun (see Dermer ’ s talk) Composition [Waxman 95, 04]

Composition clues HiRes 2005

Westerhoff (Auger) 2009

What do we know about >10 19 eV CRs? Max  : L B >10 12 (  2 /  ) (  /Z eV) 2 L sun Composition: HiRes – protons, Auger- becoming 3x10 19 eV? !!Uncertain interaction cross sections Energy production rate: - L B >10 12 L sun & R L =  /eB=40  p,20 kpc  Likely X-Galactic

[Waxman 1995; Bahcall & Waxman 03] [Katz & Waxman 09]  2 (dN/d  )=  2 (dQ/d  ) t eff. (t eff. : p +  CMB  N +  Assume: p, dQ/d  ~(1+z) m  -  > eV: consistent with protons,  2 (dQ/d  ) ~ erg/Mpc 3 yr + GZK  2 (dQ/d  ) ~Const.: Consistent with shock acceleration [Reviews: Blandford & Eichler 87; Waxman 06 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log(  2 dQ/d  ) [erg/Mpc 2 yr]

G-XG Transition at eV? Fine tuning Inconsistent spectrum [Katz & Waxman 09]

What do we know about >10 19 eV CRs? Max  : L B >10 12 (  2 /  ) (  /Z eV) 2 L sun Composition HiRes – protons, Auger- becoming heavier Uncertain interaction cross sections Energy production rate - L B >10 12 L sun & R L =  /eB=40  p,20 kpc  Likely X-Galactic - Consistent with protons,  2 (dQ/d  ) ~ erg/Mpc 3 yr + GZK

UHE CR sources Constraints: - L>10 12 (  2 /  ) L sun -  2 (dQ/d  ) ~ erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK  Transient Sources Gamma-ray Bursts (GRBs)  ~ , L  ~ L Sun  L/  2 >10 12 L sun (dn/dVdt)*E~ /Mpc 3 yr * erg ~10 44 erg/Mpc 3 yr Transient:  T  ~10s <<  T p  ~10 5 yr Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: * “ Dark ” (proton only) AGN * L~ L Sun,  t~1month flares (from stellar disruptions) [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

Anisotropy Cross-correlation signal: Inconsistent with 98% CL (~1.5  ) Consistent with LSS If anisotropy signal real & no anisotropy at 60EeV/(Z~10)  primaries must be protons See M. Lemoine ’ s talk [arXiv: ] Biased (  source ~  gal for  gal >  gal ) [Kashti & Waxman 08]

The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

Summary Galactic  <10 15 eV (<10 19 eV) - L G,CR ~ L G,SN & Max  ~10 15 eV (10 19 eV)  suggest SNR (trans-rel. SN) sources - TeV from low n, non-thermal X SNR: e - IC - Search for pp in high n, strong thermal X SNR (n/1cm 3 ) * Anti-p, e + data consistent with 2 nd ary origin Prediction: e + /(e + + e-)< up to ~300GeV PAMELA  slightly rising f rad (  ) [constrain CR prop. Models] X-Galactic  >10 19 eV - Likely protons,  2 (dQ/d  ) ~ erg/Mpc 3 yr, L B >10 12 L sun  suggest: GRBs [AGN flares?] - Anisotropy constrains primary composition Difficult to uniquely identify sources via EM observations  Search for HE ’ s

Back up slides

X-ray filaments Claim: X-ray filaments require B>100  G, much larger than required for IC explanation of TeV emission (B~10  G). Claim based on the assumption: Filaments due to e - cooling (vs, e.g., B variations). * No independent support to this assumption; * X-ray & RADIO filaments (Tycho, SN2006) inconsistent with this assumption.

What is the e + excess claim based on? On assumptions not supported by data/theory * primary e - & p produced with the same spectrum, and e - and e+ suffer same f rad  e + /e - ~  sec ~  -0.5 Or * detailed assumptions RE CR propagation, e.g. isotropic diffusion, D~  , within an  -independent box  f rad ~  (  -1)/2 If PAMELA correct, these assumptions are wrong

(Correct) detailed CR propagation models must agree with simple, analytic results derived from  sec Example: Diffusion models with {D~K 0  , box height L} reproduce data for parameter combinations shown in fig. [Maurin et al. 01] Trivial explanation: [Katz, Blum & Waxman 09] Require  sec (  =35GeV) to agree with the value inferred from B/C  sec =[3.2,3.45,3.9] g/cm 2 [green, blue, red]

The eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Waxman 95, 04, Norman et al. 95]

Anisotropy clues: I Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [Waxman, Fisher & Piran 1997] Auger collaboration: Correlation with low-luminosity 99%  AGN? AGN trace LSS  Correlation with large-scale structure? Unfortunately… Unclear.

GRB proton/electron acceleration Electrons MeV  ’ s:   <1: e - (  ) spectrum: e - (  )  energy production [Waxman 95, 04] Afterglow, R GRB ~SFR Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: 52

GRB Model Predictions [Miralda-Escude & Waxman 96]