Chapter 11 Hypothesis Tests and Estimation for Population Variances

Slides:



Advertisements
Similar presentations
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 10-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Advertisements

Business and Economics 9th Edition
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 10-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Chapter 10 Two-Sample Tests
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 10 Hypothesis Testing:
Chapter 10 Two-Sample Tests
Pengujian Hipotesis Beda Nilai Tengah Pertemuan 20 Matakuliah: I0134/Metode Statistika Tahun: 2007.
© 2002 Prentice-Hall, Inc.Chap 8-1 Statistics for Managers using Microsoft Excel 3 rd Edition Chapter 8 Two Sample Tests with Numerical Data.
Chap 11-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 11 Hypothesis Testing II Statistics for Business and Economics.
Chapter Goals After completing this chapter, you should be able to:
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 9-1 Introduction to Statistics Chapter 10 Estimation and Hypothesis.
1/45 Chapter 11 Hypothesis Testing II EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008.
A Decision-Making Approach
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 10-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
8-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Chapter 8 Confidence Interval Estimation Statistics for Managers using Microsoft.
© 2004 Prentice-Hall, Inc.Chap 10-1 Basic Business Statistics (9 th Edition) Chapter 10 Two-Sample Tests with Numerical Data.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Two Sample Tests Statistics for Managers Using Microsoft.
Basic Business Statistics (9th Edition)
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 18-1 Chapter 18 Data Analysis Overview Statistics for Managers using Microsoft Excel.
Hypothesis Testing Using The One-Sample t-Test
© 2011 Pearson Education, Inc. Statistics for Business and Economics Chapter 7 Inferences Based on Two Samples: Confidence Intervals & Tests of Hypotheses.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 6 Sampling and Sampling.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Two-Sample Tests Basic Business Statistics 10 th Edition.
Hypothesis Testing and T-Tests. Hypothesis Tests Related to Differences Copyright © 2009 Pearson Education, Inc. Chapter Tests of Differences One.
Chapter 9 Hypothesis Testing: Single Population
Chap 8-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 8 Confidence Interval Estimation Business Statistics: A First Course.
Chapter 9 Hypothesis Testing and Estimation for Two Population Parameters.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 11 Inferences About Population Variances n Inference about a Population Variance n.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 11-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Pengujian Hipotesis Varians By. Nurvita Arumsari, Ssi, MSi.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th & 7 th Lesson Hypothesis Testing for Two Population Parameters.
Chapter 10 Two-Sample Tests and One-Way ANOVA
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 10-1 Chapter 2c Two-Sample Tests.
10-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Chapter 10 Two-Sample Tests Statistics for Managers using Microsoft Excel 6 th.
A Course In Business Statistics 4th © 2006 Prentice-Hall, Inc. Chap 9-1 A Course In Business Statistics 4 th Edition Chapter 9 Estimation and Hypothesis.
Industrial Statistics 2
Chap 9-1 Two-Sample Tests. Chap 9-2 Two Sample Tests Population Means, Independent Samples Means, Related Samples Population Variances Group 1 vs. independent.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th Lesson Hypothesis Tests for One and Two Population Variances.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 10 Hypothesis Testing:
Testing Differences in Population Variances
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Two-Sample Tests Statistics for Managers Using Microsoft.
1 Objective Compare of two population variances using two samples from each population. Hypothesis Tests and Confidence Intervals of two variances use.
Chap 10-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 10 Hypothesis Tests for.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics S eventh Edition By Brase and Brase Prepared by: Lynn Smith.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 14-1 Chapter 14 Introduction to Multiple Regression Statistics for Managers using Microsoft.
Business Statistics: A First Course (3rd Edition)
Inferences Concerning Variances
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Comparing Sample Means
Copyright © 2016, 2013, 2010 Pearson Education, Inc. Chapter 10, Slide 1 Two-Sample Tests and One-Way ANOVA Chapter 10.
AP Statistics. Chap 13-1 Chapter 13 Estimation and Hypothesis Testing for Two Population Parameters.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 10-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
10-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Chapter 10 Two-Sample Tests Statistics for Managers using Microsoft Excel 6 th.
9 - 1 © 2003 Pearson Prentice Hall F-Test for Two Variances 1.Tests for Differences in 2 Population Variances 2.Assumptions Both Populations Are Normally.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 9 Hypothesis Testing: Single.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Chapter 6 Sampling and Sampling Distributions
Statistics for Managers using Microsoft Excel 3rd Edition
Chapter 11 Hypothesis Testing II
Chapter 10 Two Sample Tests
Chapter 11 Hypothesis Testing II
Chapter 10 Two-Sample Tests.
Data Mining 2016/2017 Fall MIS 331 Chapter 2 Sampliing Distribution
Data Mining 2016/2017 Fall MIS 331 Chapter 2 Sampliing Distribution
Chapter 11 Hypothesis Tests and Estimation for Population Variances
Chapter 8 Estimation: Additional Topics
Chapter 10 Hypothesis Tests for One and Two Population Variances
Chapter 10 Two-Sample Tests
Presentation transcript:

Chapter 11 Hypothesis Tests and Estimation for Population Variances Business Statistics: A Decision-Making Approach 8th Edition Chapter 11 Hypothesis Tests and Estimation for Population Variances Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Chapter Goals After completing this chapter, you should be able to: Formulate and complete hypothesis tests for a single population variance Find critical chi-square distribution values from the chi-square table Formulate and complete hypothesis tests for the difference between two population variances Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Hypothesis Tests for Variances Tests for a Single Population Variance Tests for Two Population Variances Chi-Square test statistic F test statistic Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

The Chi-Square Distribution The chi-square distribution is a family of distributions, depending on degrees of freedom: d.f. = n – 1 Assumption: from a normal population 2 2 2 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 d.f. = 1 d.f. = 5 d.f. = 15 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Chi-Square Test Statistic The chi-squared test statistic for a Single Population Variance is: where 2 = standardized chi-square variable n = sample size s2 = sample variance σ2 = hypothesized variance The test statistic standardizes the sample variance similar to the use of z and t from previous chapters Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Finding the Critical Value 2 The critical value, , is found from the chi-square table (Appendix G) Upper tail test: H0: σ2 ≤ σ02 HA: σ2 > σ02  2 Do not reject H0 Reject H0 2 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Hypothesis Test with Chi-Square Formulate the hypotheses in terms of s2 Specify the level of significance Construct the rejection region Compute the test statistic, c2 Reach a decision Draw a conclusion Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Example A commercial freezer must hold the selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (or variance of 16 degrees2). A sample of 16 freezers is tested and yields a sample variance of s2 = 24. Test to see whether the standard deviation specification is exceeded. Use  = 0.05 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Finding the Critical Value Use the chi-square table to find the critical value: 2 = 24.9958 ( = 0.05 and 16 – 1 = 15 d.f.) The test statistic is: Since 22.5 < 24.9958, do not reject H0  = 0.05 There is not significant evidence at the  = 0.05 level that the standard deviation specification is exceeded 2 Do not reject H0 Reject H0 2 = 24.9958 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Lower Tail or Two Tailed Chi-square Tests Lower tail test: Two tail test: H0: σ2  σ02 HA: σ2 < σ02 H0: σ2 = σ02 HA: σ2 ≠ σ02  /2 /2 2 2 Reject Do not reject H0 Do not reject H0 Reject Reject 21- 21-/2 2/2 (2L) (2U) Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Confidence Interval Estimate for σ2 The confidence interval estimate for σ2 is /2 /2 2 21-/2 2/2 Where 2L and 2U are from the 2 distribution with n -1 degrees of freedom (2L) (2U) Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Example A sample of 16 freezers yields a sample variance of s2 = 24. Form a 95% confidence interval for the population variance. Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Example Use the chi-square table to find 2L and 2U : 20.975 20.025 (continued) Use the chi-square table to find 2L and 2U : ( = 0.05 and 16 – 1 = 15 d.f.) /2=0.025 /2=0.025 20.975 20.025 (2L) (2U) 6.2621 27.4884 We are 95% confident that the population variance is between 13.096 and 57.489 degrees2. (Taking the square root, we are 95% confident that the population standard deviation is between 3.619 and 7.582 degrees.) Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

The F Distribution The F critical value is found from the F table The are two appropriate degrees of freedom: D1 (numerator) and D2 (denominator) Assumes the populations follow the normal distribution Assumes the samples are randomly selected and independent of each other Is the ratio of 2 independent chi-square distributions In the F table (Appendix H), numerator degrees of freedom determine the row denominator degrees of freedom determine the column Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

F Test for Difference in Two Population Variances The F test statistic is: Where F has D1 numerator and D2 denominator degrees of freedom = Variance of Sample 1 D1 = n1 - 1 = numerator degrees of freedom = Variance of Sample 2 D2 = n2 - 1 = denominator degrees of freedom Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Formulating the F Ratio where D1 = n1 – 1 ; D2 = n2 – 1 For a two-tailed test, always place the larger sample variance in the numerator For a one-tailed test, consider the alternative hypothesis: place in the numerator the sample variance for the population that is predicted (based on HA) to have the larger variance Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Finding the Critical Value HA: σ12 < σ22 H0: σ12 = σ22 HA: σ12 ≠ σ22 H0: σ12 ≤ σ22 HA: σ12 > σ22  /2 F F F F/2 Do not reject H0 Reject H0 Do not reject H0 Reject H0 rejection region for a two-tailed test is rejection region for a one-tail test is (where the larger sample variance in the numerator) Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Finding the Critical Value (continued) For a two-tailed test use the table corresponding to a/2 e.g., if a = 0.10, use the F table with the upper tail equal to 0.05 For a one-tailed test, use the F table corresponding to the actual significance level e.g., if a = 0.05, use the F table with the upper tail equal to 0.05 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

F Test: An Example You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data: NYSE NASDAQ Number 21 25 Mean 3.27 2.53 Std dev 1.30 1.16 Is there a difference in the variances between the NYSE & NASDAQ at the  = 0.05 level? Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

F Test: Example Solution Form the hypothesis test: H0: σ21 = σ22 (there is no difference between variances) HA: σ21 ≠ σ22 (there is a difference between variances) Find the F critical value for  = 0.05: Numerator: D1 = n1 – 1 = 21 – 1 = 20 Denominator: D2 = n2 – 1 = 25 – 1 = 24 F0.05/2, 20, 24 = 2.327 NOTE: Make sure the sample with the largest variance corresponds to D1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

F Test: Example Solution (continued) The test statistic is: H0: σ12 = σ22 HA: σ12 ≠ σ22 /2 = 0.025 F = 1.256 is not greater than the critical F value of 2.327, so we do not reject H0 Do not reject H0 Reject H0 F/2 =2.327 Conclusion: There is no evidence of a difference in variances at  = 0.05 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Using EXCEL and PHStat EXCEL F test for two variances: PHStat Data | Data Analysis | F-test: Two Sample for Variances PHStat Chi-square test for the variance: PHStat | One-sample Tests | Chi-square Test for the Variance PHStat | Two-sample Tests | F Test for Differences in Two Variances Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Chapter Summary Performed chi-square tests for the variance for a single population Used the chi-square table to find chi-square critical values Performed F tests for the difference between two population variances Used the F table to find F critical values Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall

Printed in the United States of America. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall