Inference for Simple Regression Social Research Methods 2109 & 6507 Spring 2006 March 15, 16, 2006.

Slides:



Advertisements
Similar presentations
1 Econometrics. 2 Ch1 The nature and scope of Econometrics Y: dependent var. => effect ( 果 ) X 1, …X k : independent var. => cause ( 因 ) Ch2-Ch5:Review.
Advertisements

03/19/2003 Week #4 江支弘 Chapter 4 Making Predictions: Regression Analysis.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 企業決策分析之報告結果與計量模型型式 之選擇 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
Chapter Four Parameter Estimation and Statistical Inference.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Stata教學 第六講 變異數分析ANOVA ©Ming-chi Chen 社會統計.
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 最小平方估計式的性質、 簡單迴歸模型之推論 參考書目: Hill, C. R., W. E. Griffiths, and.
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
社研法助教課, 2007/04/11 如何閱讀 SPSS 圖表 (迴歸分析篇) By 黃昱珽. 小考題目 大華用 SPSS 得到以下的資料: (圖表見下面) 說明 : BABYMORT = 嬰兒死亡率, GDP_CAP = 一國國民生產毛額, LIT_FEMA = 女性識字率。 資料來源 : 聯合國,
1 Simple Regression ( 簡單迴歸分析 ) Social Research Methods 2109 & 6507 Spring, 2006 March 8, 9, 13, 2006.
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G.
©Ming-chi Chen 社會統計 Page.1 社會統計 第十講 相關與共變. ©Ming-chi Chen 社會統計 Page.2 Covariance, 共變量 當 X, Y 兩隨機變數不互為獨立時,表示 兩者間有關連。其關連的形式有很多種, 最常見的關連為線性的共變關係。 隨機變數 X,Y.
Section 2.3 Least-Squares Regression 最小平方迴歸
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 質化的及有限的因變數模型 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
Structural Equation Modeling Chapter 7 觀察變數路徑分析=路徑分析 觀察變數路徑分析.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Quantitative Data Analysis Social Research Methods 2109 & 6507 Spring, 2006 March
Canonical Correlation 典型相關 目標 1 – 決定兩組變數 ( 對相同事務的衡量 ) 是否獨立, 或決定這兩組變數之間關係的強度 –Example: Y1+Y2+…+Ym=X1+X2+…Xn ( 一般式 ) Y1, Y2,…Ym 是否與 X1, X2,..,Xn 有相關 / 無相關.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
Chapter 9 Hypothesis tests with the t statistic. 當母體  為未知時 ( 我們通常不知 ) ,用樣本 s 來取代 因為用 s 來估計  ,所呈現出來的分佈已不 是 z distribution ,而是 t distribution.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 最小平方估計式的性質、 簡單迴歸模型之推論 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:報告結果 與選擇函數型式 參考書目: Hill, C. R., W. E. Griffiths, and.
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
拾壹 違反迴歸假設以及補救方法 主講人 陳陸輝 研究員 政治大學選舉研究中心. 講授主題 一、解釋變數之間的共線性問題 二、變異數不齊一性 三、誤差項自我迴歸(相關)
Regression model A prediction approach. Prediction Independent variable (input/operating variable) Dependent variable (response variable) Prediction error.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 企業在時間落差因素之決策考量 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 質化因素在企業決策分析之重要性 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 企業質化決策之應用與分析 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
&TwoDOE Class 90a1 &2 Simple Comparative Experiments Statistical Plots Sampling and Sampling Distributions Hypothesis Testing Confidence Interval.
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 最小平方估計式的性質、 簡單迴歸模型之推論 參考書目: Hill, C. R., W. E. Griffiths, and G.
生物統計學 期中報告 組員 : 醫放一 A 王小明 醫放一 A 王小明 醫放一 A 王大明 醫放一 A 王大明 2009/04/14.
Analysis of Variance (ANOVA) CH 13 變異數分析. What is ANOVA? n 檢定 3 個或 3 個以上的母體平均數是否相等的統計檢定 n 檢定多個母體平均數是否相同 n 比較大二、大三、大四學生實習滿意度是否一樣 ? ( 來 自相同的 population)
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:隨機解釋變數與時間落 差分配模型 參考書目: Hill, C. R., W. E. Griffiths, and G.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 企業決策計量模型之估計與特性 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001), Undergraduate.
Structural Equation Modeling Chapter 1 模式存在與否之需,見仁見智; 但是,人無模式,就無決策 SEM 概論.
觀測量的權 權的觀念與計算.
1 政治大學國務院國安碩專班選修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and.
變異數分析 迴歸分析 因素分析 區別分析 集區分析
1 政治大學國務院國安碩專班選修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 最小平方估計式的性質、 簡單迴歸模型之推論 參考書目: Hill, C. R., W. E. Griffiths,
描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)
1 Part IB. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple regression Spring 2007.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:非線性模型、 異質變異、自我相關 參考書目: Hill, C. R., W. E. Griffiths, and G.
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:非線性模型、 異質變異、自我相關 參考書目: Hill, C. R., W. E. Griffiths, and.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:報告結果 與選擇函數型式 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:非線性模型、 異質變異、自我相關 參考書目: Hill, C. R., W. E. Griffiths,
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 非線性因素與異質變異在企業決策之解決 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
連續隨機變數 連續變數:時間、分數、重量、……
Multi Regression 1 多元迴歸分析 【研究問題】 學生性別、數學焦慮、數學態度、數學投入動機 是否可有效預測學生的數學成就?其預測力如何? 學生性別、數學焦慮、數學態度、數學投入動機 是否可有效預測學生的數學成就?其預測力如何? 【方法分析】 研究問題中,由於預測變項包括「學生性別」、
1 政治大學國務院國安碩專班選修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:非線性模型、 異質變異、自我相關 參考書目: Hill, C. R., W. E. Griffiths,
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Chapter 12 Section 1 Inference for Linear Regression.
+ Chapter 12: Inference for Regression Inference for Linear Regression.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
Inference for Regression Chapter 14. Linear Regression We can use least squares regression to estimate the linear relationship between two quantitative.
Copyright © 2011 Pearson Education, Inc. Linear Patterns Chapter 19.
AP STATISTICS LESSON 14 – 1 ( DAY 1 ) INFERENCE ABOUT THE MODEL.
Presentation transcript:

Inference for Simple Regression Social Research Methods 2109 & 6507 Spring 2006 March 15, 16, 2006

Regression Equation Equation of a regression line: (y_hat) = α +βx y = α +βx + ε y = dependent variable x = independent variable β = slope = predicted change in y with a one unit change in x α= intercept = predicted value of y when x is 0 y_hat = predicted value of dependent variable

補充 : Proportional Reduction of Error (PRE)( 消減錯誤的比例 ) PRE measures compare the errors of predictions under different prediction rules; contrasts a naïve to sophisticated rule R 2 is a PRE measure Naïve rule = predict y_bar Sophisticated rule = predict y_hat R 2 measures reduction in predictive error from using regression predictions as contrasted to predicting the mean of y

Example: SPSS Regression Procedures and Output To get a scatterplot (): 統計圖 (G) → 散佈圖 (S) → 簡單 → 定義(選 x 及 y ) To get a correlation coefficient: 分析 (A) → 相關 (C) → 雙變量 To perform simple regression 分析 (A) → 回歸方法 (R) → 線性 (L) (選 x 及 y ) (還可選擇儲存預測值及殘差)

SPSS Example: Infant mortality vs. Female Literacy, 1995 UN Data

Example: correlation between infant mortality and female literacy

Regression: infant mortality vs. female literacy, 1995 UN Data

Diagnosis: a residual plot

Global test--F 檢定 : 檢定迴歸方程式 有無解釋能力 ( β= 0 )

The regression model ( 迴歸模型 ) Note: the slope and intercept of the regression line are statistics (i.e., from the sample data). To do inference, we have to think of α and β as estimates of unknown parameters.

Regression as conditional means Ways to think about regression: 1.Straight-line description of association 2.Prediction 3.Conditional means ( 條件平均數 ) Conditional mean: a mean computed conditional on the value of another variable Regression line predicts the conditional mean of y given x

Assumptions for regression inference Think about there as being a population or “true” regression line Assumptions: For any fixed value of x, the response (y) varies according to a normal distribution. Repeated responses y are independent of each other. μ y = α +βx (means of y conditional on x fall in a straight line) The standard deviation of y (call it σ) for each value of x is the same. The value of σ is unknown.

“True” regression line

Inference for regression Population regression line: μ y = α +βx estimated from sample: (y_hat) = a + bx b is an unbiased estimator ( 不偏估計式 )of the true slope β, and a is an unbiased estimator of the true intercept α

Sampling distribution of a (intercept) and b (slope) Mean of the sampling distribution of a is α Mean of the sampling distribution of b is β

Sampling distribution of a (intercept) and b (slope) Mean of the sampling distribution of a is α Mean of the sampling distribution of b is β The standard error of a and b are related to the amount of spread about the regression line (σ) Normal sampling distributions; with σ estimated use t-distribution for inference

The standard error of the least-squares line Estimate σ (spread about the regression line using residuals from the regression) recall that residual = (y –y_hat) Estimate the population standard deviation about the regression line (σ) using the sample estimates

Estimate σ from sample data

Standard Error of Slope (b) The standard error of the slope has a sampling distribution given by: Small standard errors of b means our estimate of b is a precise estimate of SE b is directly related to s; inversely related to sample size (n) and S x

Confidence Interval for regression slope A level C confidence interval for the slope of “true” regression line β is b ± t * SE b Where t* is the upper (1-C)/2 critical value from the t distribution with n-2 degrees of freedom To test the hypothesis H 0 : β= 0, compute the t statistic: t = b/ SE b In terms of a random variable having the t,n-2 distribution

Significance Tests for the slope Test hypotheses about the slope of β. Usually: H 0 : β= 0 (no linear relationship between the independent and dependent variable) Alternatives: H A : β > 0 or H A : β < 0 or H A : β ≠ 0

Statistical inference for intercept We could also do statistical inference for the regression intercept, α Possible hypotheses: H 0 : α = 0 H A : α≠ 0 t-test based on a, very similar to prior t-tests we have done For most substantive applications, interested in slope (β), not usually interested in α

Regression: infant mortality vs. female literacy, 1995 UN Data

Hypothesis test example 大華正在分析教育成就的世代差異,他蒐集到 117 組父子教 育程度的資料。父親的教育程度是自變項,兒子的教育 程度是依變項。他的迴歸公式是: y_hat = *x 迴歸斜率的標準誤差 (standard error) 是 : 在 α=0.05 ,大華可得出父親與兒子的教育程度是有關連 的嗎? 2. 對所有父親的教育程度是大學畢業的男孩而言,這些男 孩的平均教育程度預測值是多少? 3. 有一男孩的父親教育程度是大學畢業,預測這男孩將來 的教育程度會是多少?