A robust associative watermarking technique based on similarity diagrams Source: Pattern Recognition, Vol. 40, No. 4, pp. 1355-1367, 2007 Authors: Jau-Ji.

Slides:



Advertisements
Similar presentations
Introduction to Watermarking Anna Ukovich Image Processing Laboratory (IPL)
Advertisements

Review of : Spread Spectrum Image Watermarking Presenting: Rani Hoitash.
Image Enhancement in the Spatial Domain II Jen-Chang Liu, 2006.
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
» Copying images is easy » Distributing images is easy » But what if we want to protect our rights to an image?
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
JAVA 程式設計與資料結構 第十四章 Linked List. Introduction Linked List 的結構就是將物件排成一列, 有點像是 Array ,但是我們卻無法直接經 由 index 得到其中的物件 在 Linked List 中,每一個點我們稱之為 node ,第一個 node.
Chinese University of Hong Kong Department of Information Engineering A Capacity Estimate Technique for JPEG-to-JPEG Image Watermarking Peter Hon Wah Wong.
8.1 何謂高度平衡二元搜尋樹 8.2 高度平衡二元搜尋樹的加入 8.3 高度平衡二元搜尋樹的刪除
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
Watermarking For Image Authentication Presented by San-Hao Wang.
觀測量的權 權的觀念與計算.
Digital Watermarking. Introduction Relation to Cryptography –Cryptography is Reversibility (no evidence) Established –Watermarking (1990s) Non-reversible.
質數 (Prime) 相關問題 (III) — 如何找出相對大的質數 Date: May 27, 2009 Introducer: Hsing-Yen Ann.
計算機概論 第6章 數位邏輯設計.
Data Mining: A Closer Look Chapter Data Mining Strategies.
A Review on: Spread Spectrum Watermarking Techniques
Digital Image Watermarking Er-Hsien Fu EE381K Student Presentation.
Perceptual Watermarks for Digital Image and Video ECE 738 paper presentation Pei Qi ECE at UW-Madison
Digital Watermarking Parag Agarwal
NYMAN 2004, New York City 1 E. Ganic & Ahmet M. Eskicioglu A DFT-BASED SEMI-BLIND MULTIPLE WATERMARKING SCHEME FOR IMAGES Emir Ganic and Ahmet M. Eskicioglu.
A Method for Protecting Digital Images from Being Copied Illegally Chin-Chen Chang, Jyh-Chiang Yeh, and Ju-Yuan Hsiao.
Robust Mesh-based Hashing for Copy Detection and Tracing of Images Chun-Shien Lu, Chao-Yong Hsu, Shih-Wei Sun, and Pao-Chi Chang Proc. IEEE Int. Conf.
Multimedia Copyright Protection Technologies M. A. Suhail, I. A. Niazy
Watermarking Matt Elliott Brian Schuette. Overview Goals Methods Comparison Attacks References.
DCT-Domain Watermarking Chiou-Ting Hsu and Ja-Ling Wu, "Hidden digital watermarks in images," IEEE Trans. On Image Processing, vol. 8, No. 1, January 1999.
Robustness Studies For a Multi-Mode Information Embedding Scheme for Digital Images Daniel Eliades Mentor: Dr. Neelu Sinha Department of Math and Computer.
Robust Motion Watermarking based on Multiresolution Analysis Tae-hoon Kim Jehee Lee Sung Yong Shin Korea Advanced Institute of Science and Technology.
Information hiding in stationary images staff corporal Piotr Lenarczyk Military Uniwersity of Technology Institute of Electronics and Telecomunication.
Multiple Image Watermarking Applied to Health Information Management
1 A Combined Approach to Integrity Protection and Verification of Palette Images Using Fragile Watermarks and Digital Signatures Source: IEICE TRANS. On.
MDDSP Literature Survey Presentation Eric Heinen
DCT cs195g: Computational Photography James Hays, Brown, Spring 2010 Somewhere in Cinque Terre, May 2005 Slides from Alexei Efros.
REVERSIBLE AND HIGH- CAPACITY DATA HIDING IN MEDICAL IMAGES 報告學生:翁偉傑 1 Published in IET Image Processing Received on 25th June 2008 Revised on 15th June.
MPEG-4 AVC robust video watermarking based on QIM and perceptual masking principles Marwen HASNAOUI Maher BELHAJ Mihai MITREA Françoise PRETEUX ARTEMIS.
2010/05/061 Author: Monga, O.; Deriche, R.; Malandain, G.; Cocquerez, J.P. Source: Pattern Recognition, Proceedings., 10th International Conference,
A Novel Technique for Image Authentication in Frequency Domain using Discrete Fourier Transformation Technique (IAFDDFTT) Malaysian Journal of Computer.
Compression video overview 演講者:林崇元. Outline Introduction Fundamentals of video compression Picture type Signal quality measure Video encoder and decoder.
Multiple-description iterative coding image watermarking Source: Authors: Reporter: Date: Digital Signal Processing, Vol. 20, No. 4, pp , 2010.
NTIT1 A chaos-based robust wavelet- domain watermarking algorithm Source: Chaos, Solitions and Fractals, Vol. 22, 2004, pp Authors: Zhao Dawei,
by Mitchell D. Swanson, Bin Zhu, and Ahmed H. Tewfik
An Improved Method Of Content Based Image Watermarking Arvind Kumar Parthasarathy and Subhash Kak 黃阡廷 2008/12/3.
1 Commutative Encryption and Watermarking in Video Compression 交換式加密及浮水印法應用在視頻壓縮 IEEE Transactions on Circuits and Systems for Video Technology, VOL. 17,
JPEG - JPEG2000 Isabelle Marque JPEGJPEG2000. JPEG Joint Photographic Experts Group Committe created in 1986 by: International Organization for Standardization.
Multiple watermarking Wu Dan Introduction (I) Multipurpose watermarking Ownership watermarks (very robust) Captioning watermarks ( robust)
Blind image data hiding based on self reference Source : Pattern Recognition Letters, Vol. 25, Aug. 2004, pp Authors: Yulin Wang and Alan Pearmain.
Program Homework Implementation of the Improved Spread Spectrum Watermarking System.
Chapter 8 Lossy Compression Algorithms. Fundamentals of Multimedia, Chapter Introduction Lossless compression algorithms do not deliver compression.
Introduction to JPEG m Akram Ben Ahmed
1 Robust and transparent watermarking scheme for colour images Speaker : Po-Hung Lai Adviser : Chih-Hung Lin Date :
Ming-Feng Yeh Grey Relational Analysis x k x1x1 x2x2 x3x3.
Spread Spectrum and Image Adaptive Watermarking A Compare/Contrast summary of: “Secure Spread Spectrum Watermarking for Multimedia” [Cox ‘97] and “Image-Adaptive.
MMC LAB Secure Spread Spectrum Watermarking for Multimedia KAIST MMC LAB Seung jin Ryu 1MMC LAB.
 Digital images store large amounts of data and information. This data can be manipulated to some extend without being detected by human eyes.  DWT(Discrete.
An improved SVD-based watermarking scheme using human visual characteristics Chih-Chin Lai Department of Electrical Engineering, National University of.
Chapter 8 Lossy Compression Algorithms
JPEG Compressed Image Retrieval via Statistical Features
Reference Ingemar J. Cox, Joe Kilian, F. Thomson Leighton, and Talal Shamoon, "Secure Spread Spectrum Watermarking for Multimedia," IEEE Trans. on Image.
A Digital Watermarking Scheme Based on Singular Value Decomposition
A Digital Watermarking Scheme Based on Singular Value Decomposition
Reduction of blocking artifacts in DCT-coded images
Reversible Data Hiding in JPEG Images
Source: Pattern Recognition Letters, Article In Press, 2007
Author: Minoru Kuribayashi, Hatsukazu Tanaka
A Robust and Recoverable Tamper Proofing Technique for Image Authentication Authors: Chin-Chen Chang & Kuo-Lung Hung Speaker : Chin-Chen Chang.
Novel Multiple Spatial Watermarking Technique in Color Images
On SVD-based watermarking algorithm
An imperceptible spatial domain color image watermarking scheme
Hidden Digital Watermarks in Images
An Image Quality Evaluation Method Based on Digital Watermarking
Presentation transcript:

A robust associative watermarking technique based on similarity diagrams Source: Pattern Recognition, Vol. 40, No. 4, pp , 2007 Authors: Jau-Ji Shen and Po-Wei Hsu

2 Background Concept of Digital Watermarking

3 Framework

4 Introduction Just Noticeable Distortion Sobel Operator Association Rules Discrete Cosine Transform Original Image Watermark Embedded Image

5 Discrete Cosine Transform (DCT) FDCT IDCT Spatial domain Frequency domain AC DC

6 Just Noticeable Distortion (JND) Frequency domain (DCT) JND

7 Sobel Operator Mask 2 Mask 1 (x, y) Threshold (0) (1)(2)(3) (4)(5) (6)(7)

8 Watermark-random sequence (1/2) original image random sequence={-1,1,-1,-1,1,…,1,-1,1} watermarking key FDCT selected coefficients={9,13,-1,3,-1} modified coefficients={-9,39,-3,-3,1} IDCT

9 Watermark-random sequence (2/2) test image FDCT random sequence={-1,1,-1,-1,1,…,1,-1,1} test key selected coefficients={-9,39,-3,-3,1}

10 Association Rules (K-itemset) Transaction Database TIDItems T1A,B,E,F T2A,B,C,E,F T3B,D,E

11 Key Concept Just Noticeable Distortion Sobel Operator Association Rules [b1 I (k), b2 I (k), b3 I (k), b4 I (k)] [b1 W (k), b2 W (k), b3 W (k), b4 W (k)] Discrete Cosine Transform Original Image Watermark Embedded Image

12 Position alignment items Block mean value (0) (1) (2) (3) (4) (5) (6) (7) 1238 … 9 … k … (-1)*65+(-2)*80+(-1)*80 +0*80+0*75+0*75 +1*60+2*80+1*130=45 random sequence={1,1,-1,…,1,-1,-1…,-1,-1,1} watermark W watermarking key

13 Value alignment item … 9 … k … DCT transform AC={0, -1, 2, 77, 9, 13, -3,…, -9, 20, 3,…, 33, 5, 0} sort(abs(AC))={77,33,20,…,13,9,9,5,…,1,0,0} select first C elements

14 Quantization and sieve Quantization (M 1 =8, M 2 =7) Sieve Quantization smooth block

15 Coupling and alignment Coupling pair Alignment

16 Detection scheme pair JND

17 Experiments (1/4) 256x256 image, 208x208 watermark PSNRPSNR=36.062PSNR=37.222PSNR=35.563

18 Experiments (2/4) 200 test keys (100 th key) more blurring more sharpeningbrightness adjustment(+40) Gaussion noise (σ 2 =20) cutting (50%) JPEG compression (1%)

19 Experiments (3/4) False-negative errors: an embedding image while watermark not being detected False-positive errors: a non-watermarked image but extracted result is yes 200 test keys (100 th key)

20 Experiments (4/4) Comparisons of the proposed method and Fotopoulos’s method. Image processing attack type Our methodFotopoulos’s method False- negative errors False- positive errors False- negative errors False-positive errors Attack-Free0 / 600 Blurring0 / 600 Sharpening0 / 600 Brightness adjustment (+40)0 / 600 Gaussion noise (σ 2 =10, 15, 20)0,0,0 / 600 0,0,1 / 600 Cut (70%, 60%, 50%)0,0,10 / 6000,0,0 / 600 JPEG compression (20%, 10%, 1%)0,0,0 / 600 0,138,597 / 600 0,0,0 / 600 Total10 / / / / 7800

21 Conclusions A novel associative watermarking concept is proposed Robust against different attacks Original image is needed while detecting watermark

22 Appendices - DCT

23 Appendices - JND JND(x,y)=max{ F1(bg(x,y), mg(x,y)), F2(bg(x,y)) } F1(bg(x,y) , mg(x,y)) = mg(x,y) ‧ α(bg(x,y) + β(bg(x,y)) α(bg(x , y)) = bg(x,y) * β(bg(x , y)) = λ – bg(x , y)* 0.01 for 0 ≦ x ≦ H and 0 ≦ y ≦ W 其中 bg(x,y) 是 (x, y) 位置之平均亮度值, mg(x, y) 是 (x, y) 位置周圍透過以下四個梯度運算子 G k ,在四個方 向上計算最大平均加權亮度之差值。 bg(x,y) 及 mg(x,y) 計算式分列如下 : 表 1.1 計算 mg(x,y) 所使用四個梯度算子 G1G1 G2G2 G3G3 G4G4 T , γ ,和 λ 則分別設定為 17, 3/128 和 1/2 。       127 y)bg(x,for 127),(for yxbg         3, )127)),( ‧(‧(,3 )127/),((1 ‧(‧( )),((2 2 1 yxbg yx T yx F 

24 DCT version of JND formula is a constant whose value is 0.649, stands for the DC coefficient value of the k th block in the image, is the average value of the DC coefficients from all the image blocks, is the value of the element in position (i, j) of the JPEG quantization matrix, is a constant set to be 0.7, and finally is the coefficient value of the k th block of the image. A. B. Watson, “DCT quantization matrices visually optimized for individual images,” Proc. SPIE, Vol (1993)

25 Peak Signal-to-Noise Ratio - PSNR