Background Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing.

Slides:



Advertisements
Similar presentations
Chemistry of Protoplanetary Disks with Grain Settling and Lyman α Radiation Jeffrey Fogel, Tom Bethell and Edwin Bergin University of Michigan.
Advertisements

Models of Disk Structure, Spectra and Evaporation Kees Dullemond, David Hollenbach, Inga Kamp, Paola DAlessio Disk accretion and surface density profiles.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Chemistry and Dynamics in Protoplanetary Disks
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
School of Chemistry, University of Nottingham,UK 1 Why Does Star Formation Need Surface Science? Using Laboratory Surface Science to Understand the Astronomical.
Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Chemical evolution from cores to disks
Comets with ALMA N. Biver, LESIA, Paris Observatory I Comets composition Chemical investigation and taxonomy Monitoring of comet outgassing II Mapping.
Chemistry in low-mass star forming regions: ALMA ’ s contribution Yuri Aikawa (Kobe Univ.) Collaborators: Hideko Nomura (Kobe Univ.) Hiroshi Koyama (Kobe.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Chemistry and line emission of outer protoplanetary disks Inga Kamp Introduction to protoplanetary disks and their modeling Introduction to protoplanetary.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
ISM & Star Formation. The Interstellar Medium HI - atomic hydrogen - 21cm T ~ 0.07K.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
The abundances of gaseous H 2 O and O 2 in dense cloud cores Eric Herbst & Helen Roberts The Ohio State University.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Fate of comets This “Sun-grazing” comet was observed by the SOHO spacecraft a few hours before it passed just 50,000 km above the Sun's surface. The comet.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
Heating and Ionization of Protoplanetary Gaseous Disk Atmospheres TIARA Workshop Presentation by Al Glassgold December 5, 2005.
Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s.
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
Inga Kamp The role of the central star for the structure of protoplanetary disks Peter Woitke, Wing-Fai Thi, Ian Tilling (all Edinburgh)
The Origin of Gaps and Holes in Transition Disks Uma Gorti (SETI Institute) Collaborators: D. Hollenbach (SETI), G. D’Angelo (SETI/NASA Ames), C.P. Dullemond.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Magnetic activity in protoplanetary discs Mark Wardle Macquarie University Sydney, Australia Catherine Braiding (Macquarie) Arieh Königl (Chicago) BP Pandey.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
Astrochemistry University of Helsinki, December 2006 Lecture 1 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
Gas in Protoplanetary Disks
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-32.
Astrochemistry Les Houches Lectures September 2005 Lecture 1
The Interstellar Medium and Star Formation Material between the stars – gas and dust.
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
A NEW INTERSTELLAR MODEL FOR HIGH-TEMPERATURE TIME-DEPENDENT KINETICS Nanase Harada Eric Herbst The Ohio State University June 24, 2006 International Symposium.
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
Astrochemistry University of Helsinki, December 2006 Lecture 3 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
HIA Summer SchoolMolecular Line ObservationsPage 1 Molecular Line Observations or “What are molecules good for anyways?” René Plume Univ. of Calgary Department.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
ASTROPHYSICAL MODELLING AND SIMULATION Eric Herbst Departments of Physics, Chemistry, and Astronomy The Ohio State University.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Helen Roberts University of Manchester
Some Chemistry in Assorted Star-forming Regions Eric Herbst.
ISM & Astrochemistry Lecture 4. Nitrogen Chemistry (dark clouds) H N  NH + + H 2 Endothermic by ~ 100K N + + H 2  NH + + HEndothermic So, at low.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
Walsh, Millar & Nomura, ApJL, 766, L23 (2013)
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY The Production of Complex Molecules in Interstellar and Circumstellar Sources.
Ringberg1 The gas temperature in T- Tauri disks in a 1+1-D model Bastiaan Jonkheid Frank Faas Gerd-Jan van Zadelhoff Ewine van Dishoeck Leiden.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Gaseous Chemistry in Interstellar Space.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
On the Formation of Molecules on Interstellar Grains
The Interstellar Medium and Star Formation
The Interstellar Medium and Star Formation
Probing CO freeze-out and desorption in protoplanetary disks
Molecules: Probes of the Interstellar Medium
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

Background Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing timescale - constraints and goals … composition of solar system materials Spectroscopic observation of disks in mm, sub-mm, infrared e.g. Dutrey et al., Najita et al. Detailed models of disk structure e.g. Dullemond et al. Since then…

Outline General Theoretical Picture - disk structure - key ingredients: UV, X-ray, Cosmic-ray Observations - mm & sub-mm - infrared Chemical-Physical Likns - thermal structure - grain evolution - ionization degree - mixing Deuterium Chemistry and Comets Future

General Theoretical Picture three-layer model (i) photon-dominant layer UV & X-ray irradiation low density (n H < 10 5 cm -3 ) high temperature (T > several 10 K) log n(i)/n H height from midplane [AU] vertical r  300 AU Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

General Theoretical Picture three-layer model (i) photon-dominant layer UV & X-ray irradiation low density (n H < 10 5 cm -3 ) high temperature (T > several 10 K) (ii) warm molecular layer high density (n H > 10 5 cm -3 ) moderate temperature (T > 20 K) log n(i)/n H height from midplane [AU] vertical r  300 AU Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

General Theoretical Picture three-layer model (i) photon-dominant layer UV & X-ray irradiation low density (n H < 10 5 cm -3 ) high temperature (T > several 10 K) (ii) warm molecular layer high density (n H > 10 5 cm -3 ) moderate temperature (T > 20 K) (iii) midplane freeze-out layer very high density (n H > 10 7 cm -3 ) low temperature (T < 20 K) log n(i)/n H height from midplane [AU] vertical r  300 AU cf. Observation (Dutrey et al. 1997) : - high CN/HCN ratio - low abundance of gaseous molecules Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

General Theoretical Picture three-layer model (i) photon-dominant layer UV & X-ray irradiation low density (n H < 10 5 cm -3 ) high temperature (T > several 10 K) (ii) warm molecular layer high density (n H > 10 5 cm -3 ) moderate temperature (T > 20 K) (iii) midplane freeze-out layer very high density (n H > 10 7 cm -3 ) low temperature (T < 20 K) (iv) inside snow line (r < 10 AU) thermal desorption “hot core” like chemistry (Najita et al. talk; Markwick et al. 2002; Ilgner et al. 2004) log n(i)/n H height from midplane [AU] vertical r  300 AU Aikawa & Herbst (1999) Willacy & Langer (2000) Aikawa et al. (2002) van Zadelhoff et al. (2003)

Key ingredients X-rays from central star excite molecules (Tine et al. 1997) ionization (Glassgold et al. 1997) induce UV photons (Bergin et al. 2005) non-thermal desorption (Najita et al. 2001) enhance HCN, CN, HCO + (Aikawa & Herbst 1999; 2001;Markwick et al. 2002) X-ray induced UV ? wavelength (Å) F (erg cm -2 s -1 Å -1 ) height from midplane [AU] ionization rate [s -1 ] r=700AU Lx=10 31 erg/s erg/s erg/s erg/s

Key ingredients enhance HCN, CN, HCO + (Aikawa & Herbst 1999; 2001;Markwick et al. 2002) X-ray local hot spot grain aggregate ejected molecules height from midplane [AU] log n(i)/n H CO CN HCN X-ray desorption only thermal X-rays from central star excite molecules (Tine et al. 1997) ionization (Glassgold et al. 1997) induce UV photons (Bergin et al. 2005) non-thermal desorption (Najita et al. 2001)

Key ingredients Cosmic-rays ionization … driving force for chemistry in molecular clouds - attenuation length 96 g cm -2 (Umebayashi & Nakano 1981) - scattered by magnetic field ?? non-thermal desorption

Key ingredients interstellar UV stellar UV scattering 1+1D 2D scatter height from midplane [AU] log n(i)/n H UV from central star and interstellar field photo-dissociation and ionization - require 2D radiation transfer with scattering (van Zadelhoff et al ) - contribution of Lya line (Bergin et al. 2003; 2006) photo-desorption

Key ingredients UV from central star and interstellar field photo-dissociation and ionization - require 2D radiation transfer with scattering (van Zadelhoff et al ) - contribution of Lya line (Bergin et al. 2003; 2006) photo-desorption Log 10 F (at 100 AU) (erg cm -2 s -1 Å -1 ) C III Ly  1250 wavelength (Å) 1200 CO H2O strong L  weak L  height from midplane [AU] log n(i)/n H

Observation Gas-Phase radio: - neutral: H 2, CO, CN, HCN, CS, H 2 CO, C 2 H, - ion: HCO +, N 2 H +, H 2 D +, - deuterated: HDO, H 2 D +, DCN mid-IR: C 2 H 2, HCN, CO 2 NIR: CO, H 2 O ( Najita et al.) Optical: OI Detected species: Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO 2, NH 4 + Dutrey et al. (1997), IRAM 30m - trace r > several 10 AU - high CN/HCN ratio - low abundance of gaseous molecules Sigle Dish

Observation Gas-Phase radio: - neutral: H 2, CO, CN, HCN, CS, H 2 CO, C 2 H, - ion: HCO +, N 2 H +, H 2 D +, - deuterated: HDO, H 2 D +, DCN mid-IR: C 2 H 2, HCN, CO 2 NIR: CO, H 2 O ( Najita et al.) Optical: OI Detected species: Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO 2, NH 4 + N T (CS) = cm -2 Upper limits only for H 2 S,SO,SO 2 CS dominant Interferometer -less dilution - imaging

Observation Gas-Phase radio: - neutral: H 2, CO, CN, HCN, CS, H 2 CO, C 2 H, - ion: HCO +, N 2 H +, H 2 D +, - deuterated: HDO, H 2 D +, DCN mid-IR: C 2 H 2, HCN, CO 2 NIR: CO, H 2 O ( Najita et al.) Optical: OI Detected species: Lahuis et al. (2006), Spitzer - T > 300 K - r << 100 AU - n(i)/n H = cf. Markwick et al. (2001) Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO 2, NH 4 +

Observation Gas-Phase radio: - neutral: H 2, CO, CN, HCN, CS, H 2 CO, C 2 H, - ion: HCO +, N 2 H +, H 2 D +, - deuterated: HDO, H 2 D +, DCN mid-IR: C 2 H 2, HCN, CO 2 NIR: CO, H 2 O ( Najita et al.) Optical: OI Detected species: Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO 2, NH 4 + Acke et al. (2005) - traces disk surface at r < 1AU  double-peak  disk rotation

Observation Gas-Phase radio: - neutral: H 2, CO, CN, HCN, CS, H 2 CO, C 2 H, - ion: HCO +, N 2 H +, H 2 D +, - deuterated: HDO, H 2 D +, DCN mid-IR: C 2 H 2, HCN, CO 2 NIR: CO, H 2 O ( Najita et al.) Optical: OI Detected species: Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice water, CO, CO 2, NH 4 + LkHa330 PHA Silicate Geers et al. (2006) - r = AU - in 50% of Herbig Ae 15 % of T Tauri stars  long timescale for settling and growth

Observation Gas-Phase radio: - neutral: H 2, CO, CN, HCN, CS, H 2 CO, C 2 H, - ion: HCO +, N 2 H +, H 2 D +, - deuterated: HDO, H 2 D +, DCN mid-IR: C 2 H 2, HCN, CO 2 NIR: CO, H 2 O ( Najita et al.) Optical: OI Detected species: Solid amorphous & crystalline silicates (Wooden et al.) PAH Ice H 2 O, CO, CO 2, NH 4 + Pontoppidan et al. (2005) edge-on disk - ice absorption bands against scattered light and warm dust emission - upto 50 % of CO 2 and H 2 O are in disk

T gas and T dust are not necessarily equal. heating cooling dust radiation from thermal radiation star or upper layer gas UV (photo-electric) lines (C+, CI, OI …) gas-dust collision gas-dust collision - energy balance and chemistry have be solved simultaneously -T gas > T dust at the surface layer  extended disk “atmosphere” - no hot finger (?)  Self-consistent calc of T gas, T dust, and density distribution (Nomura & Millar 2005) - density distribution is determined by Tgas Chemical-Physical Links: gas thermal structure (Dullemond et al.; Inga & Dullemond 2004; Junkheid et al. 2004)

Chemical-Physical Links: Grain Growth Grains must coagulate & sediment to make planets - calculation of coagulation equation Dullemond & Dominik 2005, Tanaka et al. 2005) - SEDs and disk images are better reproduced with a max 1 mm (Miyake & Nakagawa 1995; D’Alessio et al. 2001; Chiang et al. 2001)  dust opacity decreases at UV wavelength >  D’Alessio et al. (2001) ISM dust a max =1mm

Chemical-Physical Links: Grain Growth As dust grows… - UV penetrates deeper into the disk  intermediate height increases - Photoelectric heating becomes less efficient  disk surface decreases  disk is less flared-up - Molecular layer is pushed down to lower heights Junkheid et al. (2004) Aikawa & Nomura (2006)

Chemical-Physical Links: ion fraction Angular momentum transport by Magneto-Rotational Instability - magnetic field decouples if ionization degree (x e ) is too low - accretion and turbulence may be active only on disk surface Gammie (1996)

photoionization of H: x e > 10 4 photoionization of C: x e  10 4 Cosmic-ray and X-ray ionization: x e  HCO +, H 3 + Cosmic-ray and Radionucleide: r 60 AU x e  x e  x e  Metal + /grain HCO + /grain H 3 + & D 3 + (Sano et al. 2000; Semenov et al. 2004) agreement with simple chemistry ?? -> TED Chemical-Physical Links: ion fraction Angular momentum transport by Magneto-Rotational Instability - magnetic field decouples if ionization degree (x e ) is too low - accretion and turbulence may be active only on disk surface

Chemical-Physical Links: mixing Three must be some mixing in the disks, because… - angular mom. transport by turbulent viscosity - crystalline silicate in disks and comets - refractory inclusions in meteorites t mix ~ t vis ? (cf. Carballido et al. 2005) Chemistry is modified if t mix < t chem : Three-layer structure is preserved because t chem is small in the surface and midplane Species formed on grains (ex. H 2 CO) are enhanced by vertical mixing Ionization fraction is not modified NH 3 CS R [AU] Stationary z-mixing Advection & r-mixing H 2 CO electron Semenov et al. (2006) in prep Z/Z max see also Willay et al. and Ilgner et al.

Deuterium chemistry in disks Isotopic fractionations in comets and meteorites D/H enrichment in low temperature - D-H exchange reactions H HD  H 2 D + + H K H 2 D + + CO  HCO + + HD H 2 D + + e  H 2 + D - Further enhancement by CO depletion survival of interstellar matter ? nebula process ?

Deuterium chemistry in disks Detection of deuterated species in disks ! species col [cm -2 ] D/H object DCO + 3x TW Hya HDO (0.064) LkCa15 8x10 12 (1x10 -3 ) DM Tau DCN (< 2x10 -3 ) LkCa15 o-H 2 D + 4x10 12 DM Tau 6x10 13 TW Hya van Dishoeck et al. (2003), Kessler et al. (2003), Caccarelli. et al. (2004; 2005), DM Tau HDO H2D+H2D+ TW Hya

Deuterium chemistry in disks species col [cm -2 ] D/H object DCO + 3x TW Hya HDO (0.064) LkCa15 8x10 12 (1x10 -3 ) DM Tau DCN (< 2x10 -3 ) LkCa15 o-H 2 D + 4x10 12 DM Tau 6x10 13 TW Hya van Dishoeck et al. (2003), Kessler et al. (2003), Caccarelli. et al. (2004; 2005), Model: - High D/H right above the midplane - Midplane is traced by H 3 +, H 2 D +, HD 2 +, D 3 +  grain size & ionization rate Ceccarelli & Dominik (2005) Detection of deuterated species in disks !

Deuterium Chemistry: Links to Comets Comet: r= 5-30 AU cf. radio obs: gas beam size > 100 AU D/H in comets HDO 3x10-4 (2x10-3) DCN 2x10-3 -D/H changes while fluid parcel migrates towards the inner radius (Aikawa & Herbst 1999) … mixing is not considered - D/H is determined by radial mixing (Hersant et al. 2001) … only thermal reactions D/H model with mixing (radial & vertical) and full chemistry is highly desirable ! species col [cm -2 ] D/H object DCO + 3x TW Hya HDO (0.064) LkCa15 8x10 12 (1x10 -3 ) DM Tau DCN (< 2x10 -3 ) LkCa15 o-H 2 D + 4x10 12 DM Tau 6x10 13 TW Hya

future